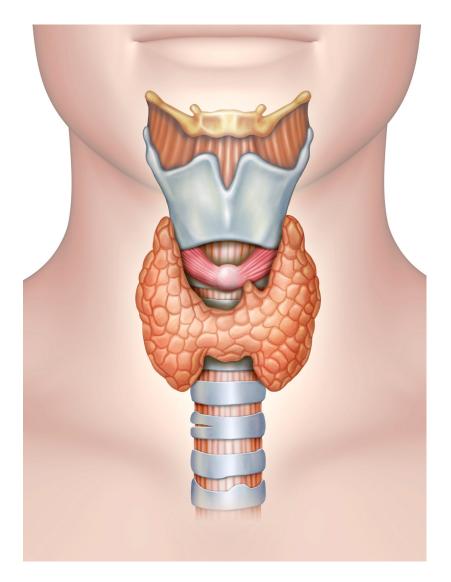
Thyroid gland disorders

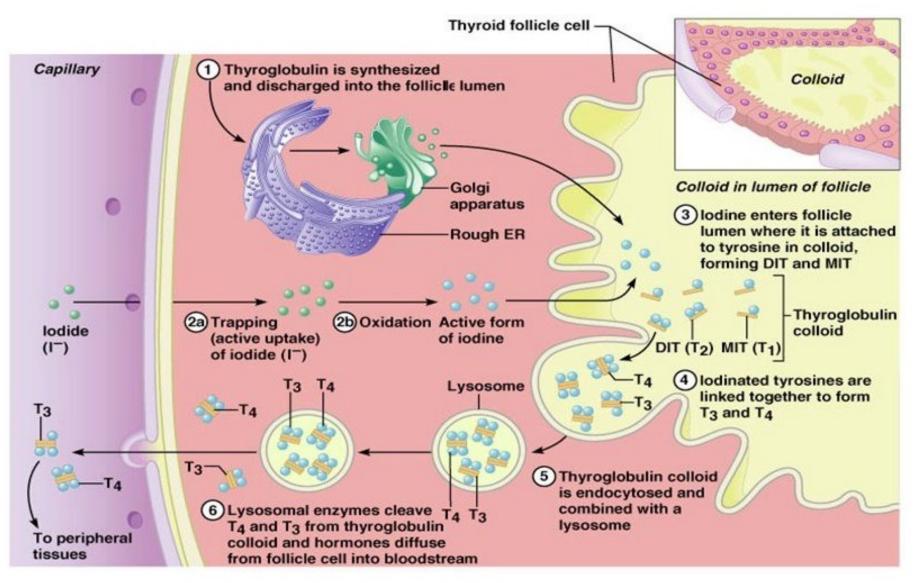
Dr. Sara Awad MBBS MHPE FRCPC

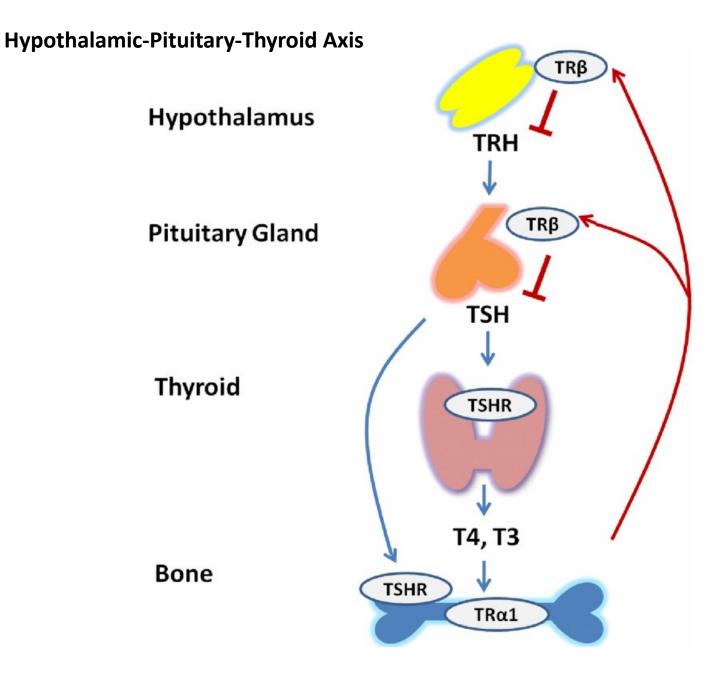
Queen's University

December 9, 2021


Objectives

- Review of thyroid gland anatomy and physiology
- Approach to assessment and management of hyperthyroidism
- Approach to assessment and management of hypothyroidism


Objectives


- Review of thyroid gland anatomy and physiology
- Approach to assessment and management of hyperthyroidism
- Approach to assessment and management of hypothyroidism

Thyroid gland: Anatomy

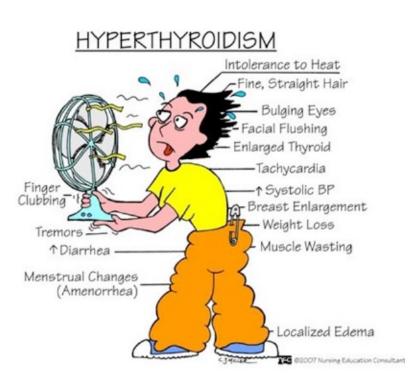
Thyroid hormone synthesis

Thyroid hormone action

- Protein synthesis
- Carbohydrate metabolism (increase glucose)
- Lipid metabolism (decrease cholesterol)
- Increased metabolic rates
- Cardiac function (ionotropic and chronotropic)
- Increased sensitivity to catecholamines
- Stimulate GI motility
- Respiration
- Increased EPO secretion and thus RBC synthesis
- Fetal brain development
- Skeletal maturation
- Growth and development
- Thermal regulation
- Sexual function

Objectives

- Review of thyroid gland anatomy and physiology
- Approach to assessment and management of hyperthyroidism
- Approach to assessment and management of hypothyroidism


Approach to Hyperthyroidism

- Hyperthyroidism is characterised by increased thyroid hormone synthesis and secretion from the thyroid gland
- Thyrotoxicosis refers to the clinical syndrome of excess circulating thyroid hormones, irrespective of the source.

When to suspect?

Thyrotoxicosis symptoms:

- Heat intolerance
- Increased sweating
- Tremor
- Palpitations/Tachyarrhythmias
- Heart failure
- Insomnia
- Emotional lability/anxiety
- Unintentional weight loss despite increased appetite
- Increased bowel frequency
- Menstrual abnormalities

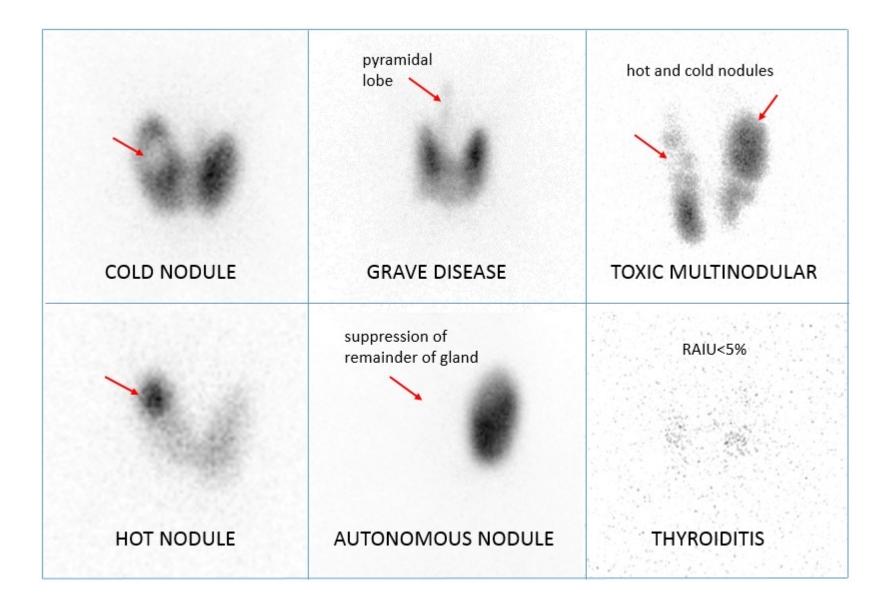
When to suspect?

Thyrotoxicosis signs:

- Fine tremors
- Soft, warm and sweaty skin (handshake)
- Tachycardia/atrial fibrillation
- Eyes (exophthalmos, lid lag, lid retraction)
- Increased cardiac output/wide pulse pressure
- Systolic hypertension
- Heart failure
- Hyperreflexia

Approach to differential diagnosis of thyrotoxicosis

- Increased thyroid hormone production (hyperthyroidism):
 - Grave's disease
 - Toxic nodule/toxic multinodular goiter
 - TSH-secreting pituitary tumor (rare)
- Release of preformed thyroid hormones:
 - Thyroiditis (acute, subacute, postpartum, chronic, infectious)
- Exogenous use of thyroid hormones
- Medications: amiodarone
- Laboratory interference: Biotin
- Rare: struma ovarii, metastatic functional follicular thyroid cancer

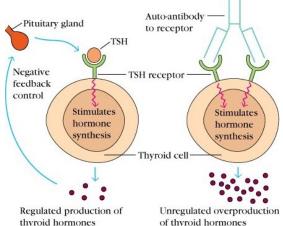

Confirmation of Thyrotoxicosis

• Case finding: TSH

- Low TSH
- Confirmation:
 - Repeat \downarrow TSH + \uparrow FT4 + \uparrow FT3

Role of Thyroid imaging

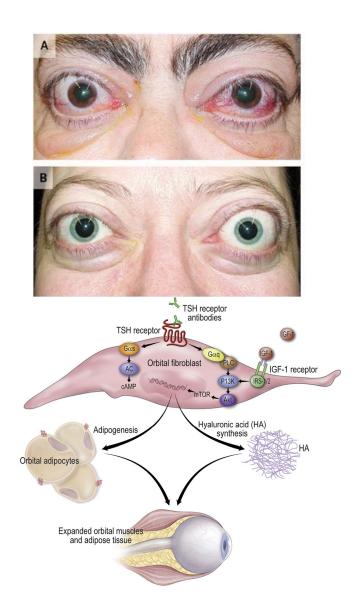
- Thyroid radioactive iodine uptake and scan
 - Increased I-131 uptake
 - Diffuse (Graves) vs. nodule uptake (toxic nodule/TMNG)
 - Decreased I-131 uptake
 - Thyroiditis, exogenous ingestion
- Thyroid Ultrasound
 - Can show goiter/increased vascularity (Grave's) vs. decreased vascularity/atrophy (thyroiditis)
 - Not sensitive nor specific or required for the diagnosis
 - Only for palpable nodule on thyroid exam


Initial treatment

- Until the diagnosis is clear, patients with thyrotoxicosis and hyperadrenergic symptoms should be started on beta-blockers (BB)
- Propanolol reduces T4 \rightarrow T3 conversion
 - (only at high doses)
- Any BB will work for symptom relief
 - Improves HR, SBP, muscle weakness, tremor, irritability, and exercise intolerance

Graves Disease

- Also known as toxic diffuse goiter
- Most common cause of hyperthyroidism
- Caused by an autoantibody against the thyroidstimulating hormone (TSH) receptor
 - TSH-receptor antibody (TRAb)
- Unlike most autoantibodies, which are inhibitory, this autoantibody is stimulatory


Graves Disease

- Risk factors: female, age ~ 30-50, personal or family history of autoimmune diseases, iodine load
- Symptoms: acute/subacute, thyrotoxic, goiter, bruits, Graves orbitopathy or dermopathy
- Signs: thyrotoxic, diffuse goiter, orbitopathy, dermopathy

Graves Orbitopathy

- Proptosis
- Periorbital edema
- Ophthalmoplegia/diplopia
- Chemosis
- Visual loss
 - Ocular emergency

TRAb related

Graves Dermopathy Pretibial myxedema

Biochemical diagnosis

- Consider pretest probability of Graves
- ↓TSH ↑fT3 ↑fT4
- fT3:fT4 ratio >0.3
- TRAb +
 - 97% sensitive, 98% specific
 - Not covered by OHIP

Graves Disease: Treatment

- Antithyroid medications (Thionamides): methimazole (MMZ) and propylthiouracil (PTU)
- First line: Methimazole OD or BID
 - fT4 1-1.5x ULN: 5-10 mg
 - fT4 1.5-2x ULN: 10-20 mg
 - fT4 2-3x ULN: 20-40 mg
- Second line: PTU
 - Higher rate of hepatotoxicity
 - Preferred 1st T pregnancy due to fewer birth defects

Graves Disease: Treatment

- Antithyroid Drugs (ATD)
 - Thyroid function is assessed every 6 8 weeks
 - The dose is reduced as thyroid hormone levels normalize (follow fT3 and fT4, TSH takes longer to recover)
 - 50-70% will go into **remission.** Predictors are:
 - females, non-smokers
 - mild disease, small goiter
 - low-titer or negative TRAb
 - Recurrences may occur in up to 30%
 - Lifelong or second-line therapy is needed in some

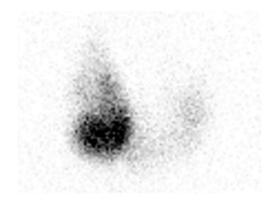
Side effects of Thionamides

- Common
 - Rash, pruritis, metallic taste, nausea, dyspepsia
- Hematologic
 - Agranulocytosis 0.1-0.5% risk
 - More likely in first 3 months
 - Controversy about CBC monitoring, not about case finding
- Hepatotoxicity
 - PTU –very rarely Hepatic Failure and death
 - MMI cholestatic; lower risk of liver failure
- Vasculitis
 - ANCA + Vasculitis -Rare PTU +/-methimazole; Blood test may be positive with no clinical vasculitis
- Pancreatitis
 - Methimazole 6 case reports
- Baseline CBC/differential, LFTs, and q 4-6 weeks in the first 3 months and as needed if symptoms
 - Counsel the patient when to seek medical attention

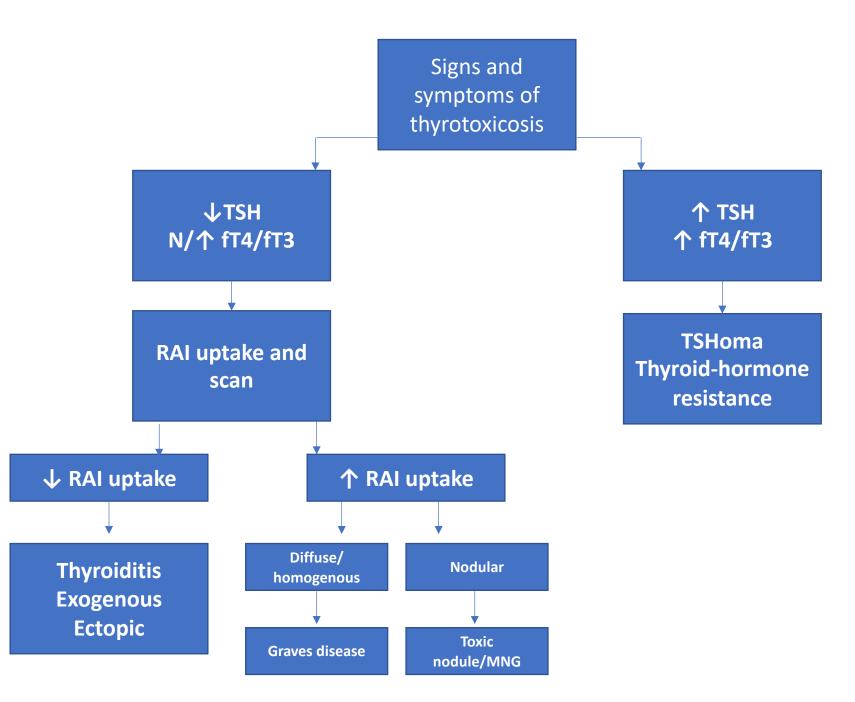
Radioactive lodine treatment

- Safe and cost-effective
- Single oral dose, outpatient procedure
- Success rate 75-90%
- Goal is Euthyroidism, gland shrinkage
 - 60-70% develop hypothyroidism
- Check labs q4-6 wks
 - Levothyroxine replacement therapy is started when low fT4/high TSH

Radioactive lodine treatment


- Indications:
 - Contraindication or intolerance of ATD
 - No remission on ATD
 - Previous neck surgery/radiation
 - Patient preference
- Contraindications:
 - Planning pregnancy in <6-12 months
 - Pregnancy and breast feeding
 - Moderate to severe active Graves orbitopathy
 - Cannot follow radiation safety guidelines
 - Thyroid storm
 - Thyroid cancer or suspicion for thyroid cancer.

Surgery: Total Thyroidectomy


- Pre-treat with ATDs
- Consider potassium iodide pre-op to reduce blood flow
- Risks: Hypoparathyroid, RLN, bleeding
- Surgery recommended
 - Symptomatic or very large goiters
 - Suspected thyroid cancer/ worrisome nodules
 - Moderate to severe active Graves' orbitopathy and desire for definitive therapy
- Surgery discouraged
 - High risk for surgery
 - Pregnancy
 - If responsive to ATDs, if necessary, surgery in 2nd trimester is best time.

Other causes of thyrotoxicosis

- Toxic nodule or toxic MNG
 - RAI treatment, ATD or surgery

- Thyroiditis
 - Monitor
 - Treat if permanent hypothyroidism

Isolated low TSH?

- Subclinical hyperthyroidism
 - Graves disease, toxic nodule/TMNG, thyroiditis
- Recent treatment for hyperthyroidism (ATDs, RAI)
- Drugs (steroids)
- Non-thyroidal illness
- Laboratory errors
 - Assay interference (heterophile antibodies, rheumatoid factor, macroTSH), false positive
- Overtreatment with Synthroid
- hCG mediated (gestational, hyperemesis gravidarum, trophoblastic germ cell tumors)

↓TSH

Normal fT4/fT3

Progression to over hyperthyroidism

- Conflicting data
 - Rates all over the place
- More likely TSH < 0.1
- Spontaneous recovery
 - Sometimes happen
- Increased bone resorption and fracture risk, increased risk of CAD/CHF/arrythmias and mortality (elderly)

SC Hyperthyroidism: Treatment

- Treat if TSH <0.1 and any of the following
 - CVD or high cardiac risk
 - Osteoporosis or high fracture risk
 - Age >65 years
- Don't treat if >0.1, no risk factors for complications and age <65 years
- Otherwise, unclear
 - Favor treatment
 - Symptoms, autonomous nodule, or CVD, osteoporosis and TSH >0.1
 - Favor observation if age > 65 years and TSH >0.1 and none of the above

Objectives

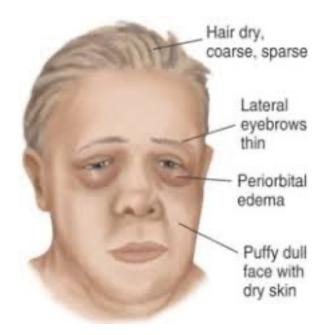
- Review of thyroid gland anatomy and physiology
- Approach to assessment and management of hyperthyroidism
- Approach to assessment and management of hypothyroidism

Hypothyroidism

- Poor Thyroid production
- Differential diagnosis:
 - Iodine deficiency
 - Autoimmune / Hashimoto's
 - Thyroidectomy or iodine ablation
 - Post Thyroiditis
 - Drugs (eg. lithium, amiodarone, TKI)
 - Congenital absence of gland

When to suspect? Hypothyroidism symptoms

- Fatigue
- Dry skin
- Hair loss
- Cold intolerance
- Weight gain despite decreased appetite
- Constipation
- Menorrhagia
- Memory impairment
- Poor concentrating
- Muscle ache


Elderly Patients:

Fewer symptoms, subtle and vague

- •Confusion, memory change
- •Anorexia
- •weight loss
- •Falling, decreased mobility
- Incontinence
- Arthralgias
- Constipation
- •Heart failure
- •Bradyarrhythmia

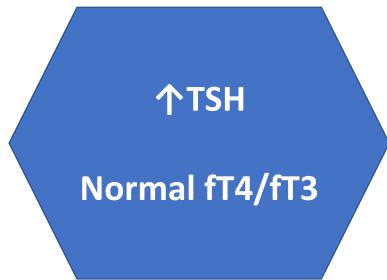
When to suspect? Hypothyroidism signs

- Puffy face
- Nonpitting edema (myxedema)
- Dry, coarse skin, hair
- Hair loss
- Hoarse voice
- Carotinemia
- macroglossia
- Bradycardia
- Diastolic hypertension
- Delayed reflex relaxation phase
- Carpal tunnel syndrome
- Pleural and pericardial effusions

Confirmation of hypothyroidism

- Case finding: 个TSH
- ↑TSH + ↓fT4
- Do not order fT3
- Anti-TPO and Anti-thyroglobulin
 - Available
 - Sensitive for autoimmune hypothyroidism but less specific
 - Almost (never?) influence clinical decisions in overt hypothyroidism
 - US thyroid or radioactive iodine
 - Characteristic features in Autoimmune but not sensitive nor specific or required for the diagnosis
 - Only if palpable thyroid nodule on physical exam

Hypothyroidism: Treatment


- Thyroid hormone: levothyroxine (L-T4)
 - Brand names: Synthroid, Eltroxin
- Converted to T3 peripherally by deiodinase enzymes
- Half-life of 7 days
- Given 30-60 min before breakfast with water
- Alternate: At bedtime 3 hours after last meal
- Full replacement dose ~1.6 µg/kg of IBW
 - Start low in subclinical hypothyroidism and elderly
- Wait 6-8 weeks after a change in the dosage to see the effect in the TSH
- Target normalization of TSH level
- When target TSH obtained, monitor TSH every 6-12 m

Hypothyroidism: Treatment

- Use of a consistent preparation to minimize variability
- Absorption impaired:
 - Iron, calcium, aluminum, soy, sucralfate, cholestyramine
 - Take these 4 hrs before or after the levothyroxine
 - Ask about multivitamins
 - Malabsorptive states, eg. Celiac disease (IgA, anti-TTg antibodies)
- Increased metabolism:
 - Eg. Phenytoin, carbamazepine

Isolated high TSH

- Subclinical hypothyroidism
 - Autoimmune/Hashimoto's
- Poor adherence to LT4
- Malabsorption of LT4
- Drugs (amiodarone, lithium)
- Non-thyroidal illness recovery
- Laboratory errors
 - Assay interference (heterophile antibodies, rheumatoid factor, macroTSH), false positive
- TSH resistance

SC Hypothyroidism: Treatment

- TSH >10 mIU/L
- Therapeutic trial for possible hypothyroidism symptoms
- Age <40-65
- ?Infertility, Ovulatory dysfunction
- ?DLP, CKD, CVD

SPECIAL ARTICLE

THYROID Volume 27, Number 3, 2017 © American Thyroid Association © Mary Ann Liebert, Inc. DOI: 10.1089/thy.2016.0457

2017 Guidelines of the American Thyroid Association for the Diagnosis and Management of Thyroid Disease During Pregnancy and the Postpartum

Erik K. Alexander,^{1,*} Elizabeth N. Pearce^{2,*} Gregory A. Brent,³ Rosalind S. Brown,⁴ Herbert Chen,⁵ Chrysoula Dosiou,⁶ William A. Grobman,⁷ Peter Laurberg,^{8,†} John H. Lazarus,⁹ Susan J. Mandel,¹⁰ Robin P. Peeters,¹¹ and Scott Sullivan¹²

Pregnancy specific reference ranges

TABLE 4. REFERENCE RANGES FOR THYROTROPIN AND FREE THYROXINE DURING EARLY PREGNANCY WORLDWIDE

			TSH	, mU/L		FT4, pmol/	/L (ng/dL)		Popula	tion characteristics
Author, country (reference) (analyzing method)	Ν	Gestation (week)	Median	2.5th– 97.5th	Median	2.5th– 97.5th	(Median, 2.5th–97.5th)	Iodine insufficiency	Mean BMI	Ethnicities
Bestwick <i>et al.</i> , Italy (24) (AutoDELFIA) Bestwick <i>et al.</i> , UK (24) (Advia Centaur) Bocos-Terraz <i>et al.</i> , Spain (264) (Architect)		<16 <16 <14	1.07 1.11 0.94	0.04–3.19 0.06–3.50 0.41–2.63	9.3 13.9 13.9	10.9-17.9	(0.73, 0.58–0.95) (1.08, 0.85–1.40) (1.08, 0.84–1.38)	Moderate-mild		NR NR Caucasian (93%)
Gilbert <i>et al.</i> , Australia (271) ^b (Architect)	1817	9–13	0.74	0.02-2.15	13.5	10.4–17.8	(1.05, 0.81–1.39)	Borderline	NR	Australian
Liet							own by	•		,
(A: Medi	ne u	pper	limi	t of n	orm	ial do	own by 0	·	~ 3	·
(A) Medi (Viaos Lei) Pearce <i>et al.</i> , USA (142)	1e u 585	oper <14	11 m 1	t of n 0.04–3.60	2.1 ^h	1.5–2.9 ^g	own by 0 _	.5 (TSH Borderline	~ 3 _{NR}	Turkish (8%), Moroccan (6%) White (77%) and African
(A) Medi (Vhros Det) Pearce <i>et al.</i> , USA (142) (Advia Centaur) Quinn <i>et al.</i> , Russia (272)	585 380	<14 T1	1.1 1.66	0.04–3.60 0.09–4.67			own by 0 	surnetent		Surmanese Andrean (12.%), Turkish (8%), Moroccan (6%
(A Medi (Varos Let) Pearce <i>et al.</i> , USA (142) (Advia Centaur) Quinn <i>et al.</i> , Russia (272) (Abbott AxSYM) Springer <i>et al.</i> , Czech Republic (268) ^h	585	<14	1.1	0.04-3.60			own by 0 	Borderline	NR	Turkish (8%), Moroccan (6%) White (77%) and African American (10%)
(A Medi (Varos Eer) Pearce <i>et al.</i> , USA (142) (Advia Centaur) Quinn <i>et al.</i> , Russia (272) (Abbott AxSYM)	585 380 549	<14 T1 T2	1.1 1.66 2.00 1.21	0.04–3.60 0.09–4.67 0.20–4.68	2.1 ^h	1.5–2.9 ^g 10.5–18.5	0wn by 0 (1.08, 0.82-1.44) (0.95, 0.74-1.22)	Borderline Moderate Mild	NR NR	Turkish (8%), Moroccan (6%) White (77%) and African American (10%) Russian (presumed)

Screen and Treat SC Hypo/Anti-TPO

- Does it decrease pregnancy loss and complications?
 - Negro et al. 2006 RCT LT4 vs placebo in euthyroid, anti-TPO positive JCEM
 - Small study. Reduced pregnancy loss. LT4 started late.
 - Negro et al. 2010 Universal screening vs case finding. JCEM
 - Larger study. No difference between groups.

Screen and Treat SC Hypo/Anti-TPO

- Does it improve neurocognitive outcomes in offspring?
 - Observational studies show association between thyroid abnormalities and poorer cognitive outcomes in pregnancy
 - Lazarus et al. 2012. Antenatal screening and child cognitive fx. NEJM (CATS trial)
 - RCT; No benefit.
 - Casey BM et al. Treatment of Subclinical Hypothyroidism or Hypothyroxinemia in Pregnancy. NEJM 2017
 - RCT; No Benefit.

SC Hypothyroidism is pregnancy

ATA Recommendations

- Universal screen with TSH in early pregnancy– Insufficient Evidence
- Preconception screening with TSH –Insufficient evidence
 - Exceptions –Seeking assisted reproduction or known anti-TPO +
- Screen with FT4 –Not recommended

SC Hypothyroidism is pregnancy

Case Finding – ATA Recommended

- History of or signs/symptoms of thyroid dysfunctions
- Positive TPO+ antibody known
- Goitre
- Head and neck radiation or thyroid surgery
- Age > 30
- Type 1 diabetes or other autoimmune disorder
- Family history of thyroid dysfunction
- BMI>40
- Amiodarone, lithium or recent radiocontrast
- Iodine deficient area

SCH Pregnancy: Treatment

- Strong evidence to start treatment is TSH >10
- I would treat if TSH 4-10
- Consider treatment if TSH 2.5-4.0
 - Check anti-TPO?
 - Previous miscarriage?
 - Other risk factors for pregnancy loss?
 - Assisted reproductive technology?
 - Risk vs. benefits?
 - Very low on both sides

Objectives

- Review of thyroid gland anatomy and physiology
- Approach to assessment and management of hyperthyroidism
- Approach to assessment and management of hypothyroidism

Thank you Questions?

