Physics of Ultrasound Artifacts

Annette Vegas MD, FRCPC, FASE Professor Anesthesiology

Toronto General Hospital Department of Anesthesia Perioperative Interactive Education

http://pie.med.utoronto.ca/TEE/

Objectives

- Identify common ultrasound artifacts
- Understand the physics behind 2D artifacts

Artifacts

- Definition: Any error in imaging
- Important to recognize
 - Object not real: wrong diagnosis
 - Object missing: miss real findings
 - Incorrect size, place: wrong measurements
- Causes
 - Equipment malfunction
 - Error: operator, viewer
 - Lack understanding of US physics
 - Violate sound assumptions

Sound Assumptions

- 1. Sound travels in a straight line
- 2. Sound is constant 1540m/s
- **3**. Sound goes directly to reflector + back
- 4. Thin imaging plane
- 5. Reflections only from beam's main axis
- 6. Reflections related to tissue characteristics

Types of 2D Artifacts

Propagation
Reverberation
Refraction
Multipath
Grating lobe
Range ambiguity

2Attenuation

Acoustic shadow Enhancement Focal enhancement

3 Resolution Axial, lateral Beam thickness Dropout Speckle/noise Near field clutter

Propagation Path

Reverberation (Bounce)

- Mirror image
- Comet tail
- Ringdown
- Refraction (Shift)
 - Ghosting
 - Speed error
 - Edge shadowing
- Side / Grating Lobe
- Range Ambiguity

Reverberation Artifacts

- Bouncing of US beam (reflections) between 2 strong reflectors
- Echoes of an echo
- Single or multiple artifacts
- Equally spaced lines \downarrow amplitude
- Parallel to sound beam
- Deeper in straight line

What artifact are the blue arrows pointing to in both of these TEE clips ?

- 1. None, it is normal
- 2. Edge enhancement
- 3. Mirror image
- 4. Acoustic shadowing
- 5. Refraction

Mirror Image

- Reverberation artifact
- Single reflection between strong reflector + transducer on same path
- 2nd copy of reflector at twice distance
- Same structure more than one place
- Color Doppler also appears
- UE Aortic arch LAX, Desc Aorta SAX + LAX

What artifact are the blue arrows pointing to in both of these TEE clips ?

- 1. None, it is normal
- 2. Focal enhancement
- 3. Ringdown
- 4. Comet tail
- 5. Refraction

Comet Tail

- Reverberation artifact
- Small intense reflector repeatedly reflected in line with US beam
 - Aortic atheroma, mechanical valves
- Tail distal to object (long hyperechoic line)
- Thin closely spaced discrete (clean shadow)
- Parallel to sound beam

What artifact (hyperechoic region) are the blue arrows pointing to in these 2 views ?

- 1. None, it is normal
- 2. Focal enhancement
- 3. Ringdown
- 4. Comet tail
- 5. Refraction

Ringdown

- Reverberation artifact (?)
- Fluid trapped by air, resonates
- Multiple reflections
- Numerous, thin, closely spaced
 - less discrete than comet tail
- Streaks at end scan line (dirty shadow)

Refraction

- Refraction is bending of transmitted + reflected waves
- Sound changes direction when
 - it strikes a boundary obliquely
 - media have different propagation speeds
- US beam reflects off structures outside beam planes
- Examples
 - Ghosting
 - Speed error
 - Edge shadowing

What artifact is shown in this ME AV LAX view ?

- **1**. Diffraction
- 2. Refraction
- 3. None, it is normal
- 4. Edge enhancement
- 5. Focal enhancement

Denault A, Couture P, Vegas A, et al. Transesophageal Echocardiography Multimedia Manual 2nd ed

Ghosting

- Refraction type
- Bending of sound striking curved boundary obliquely
- 2nd copy reflector side-by-side true anatomic structure
- Objects in different position then actually are
- Extra echoes present
- Degrades lateral resolution (edges appear blurred)

What artifact (anechoic region) is the blue arrow pointing to in this ME Ascending Aorta view ?

- **1.** Shadowing
- 2. Edge shadowing
- 3. Dropout
- 4. Edge enhancement
- 5. None, it is normal

Edge Shadowing

- Refraction artifact (not attenuation)
- Beam bent edge of round structures, no returning echo
- Small dark areas under edges circular structure (anechoic)
- High to low velocity = narrow shadow, opposite is true

Example 6 Artifact

Lossy Compression - not intended for diagnosis

What artifact are the blue arrows pointing to in both of these TEE clips ?

- 1. Enhancement
- 2. Ghosting
- 3. None, it is normal
- 4. Side lobe
- 5. Focal enhancement

Side-Grating Lobe

- Side lobes (single), Grating lobes (array) transducer
- US not in main beam
- Bounce off highly reflective structures(calcified aorta, mechanical valves, catheters)
- Multiple structures either side
- Curved arc same level of true object
- Hyperechoic, superimposed over structures

Example 7 Artifact

Denault A, Couture P, Vegas A, et al. Transesophageal Echocardiography Multimedia Manual 2nd ed

What artifact is shown in this ME 4 chamber view ?

- 1. Enhancement
- 2. Echo contrast
- 3. None, it is normal
- 4. Range ambiguity
- 5. Focal enhancement

Denault A, Couture P, Vegas A, et al. Transesophageal Echocardiography Multimedia Manual 2nd ed

Range Ambiguity

- Propagation path
- Pulsed sound returns late, after 2nd pulse sent
- Late reflection from reflector beyond scan area
- Deeper structures <u>closer</u> then actual location unexpected intra-cardiac echo
- Changing depth (PRF) artifact may disappear/reposition

Attenuation Artifacts

- Acoustic Shadowing
- Enhancement
- Focal Enhancement

Example 8 Artifact

What artifact (anechoic region) is the blue arrow pointing to in this ME 4 chamber view ?

- 1. Shadowing
- 2. Edge shadowing
- 3. Dropout
- 4. Edge enhancement
- 5. Refraction

Shadowing

- Attenuation type artifact
- Lose US transmission from high reflection or absorption
- High density structures (calcium, prosthetic valves)
- Distal structures not seen (anechoic)
- Shadow shape follows US path
 - small structure close to transducer casts long shadow

Example 9 Artifact

53 bpm

What artifact (hyperechoic region) is the blue arrow pointing to in this TG mid SAX view ?

- 1. None, it is normal
- 2. Focal enhancement
- 3. Dropout
- 4. Edge enhancement
- 5. Refraction

Enhancement

- Attenuation type artifact
- Proximal structure low sound absorption (< soft tissue) distal structure more energy reflected
- Hyperechoic region under tissue of low attenuation
 - Distal structures brighter (hyperechoic)
 - Transmitted object darker (hypoechoic)
- Opposite of shadowing

Example 10 Artifact

.

51 bpm

What artifact (hyperechoic region) is the blue arrow pointing to in this TG mid SAX view ?

- 1. None, it is normal
- 2. Focal enhancement
- 3. Dropout
- 4. Edge enhancement
- 5. Refraction

Focal Enhancement

- Occurs around focal zone
- Increased side by side intensity, extra echoes
- Too much band brightness compared to other depth
- Same appearance as incorrect TGC settings

Resolution

- Axial Resolution
- Lateral Resolution: Beam width
- Elevational Resolution: Slice/Beam thickness
- Dropout
- Speckle/Noise
- Near Field Clutter

Example 11 Artifact

What artifact (anechoic region) is the blue arrow pointing to in this TG mid SAX view ?

- 1. None, it is normal
- 2. Acoustic shadowing
- 3. Dropout
- 4. Edge shadowing
- 5. Refraction

Dropout

- Structures not seen, anechoic
- Signal attenuation from
 - Inadequate TGC/brightness or power
 - High frequency transducer
- Imaging beam parallel to structure (anistrophy)
- TG SAX view poorly seen lateral + septal wall

Example 12 Artifact

What US machine knob was adjusted to eliminate the artifact the blue arrow is pointing to in this ME AV LAX view?

- 1. Focus
- 2. Overall Gain
- **3**. TGC Gain
- 4. Contrast
- 5. Harmonics

Noise

Acoustic (acoustic speckle)

- Interference of scattered sound waves reflection from tissues
- Small amplitude echoes, grainy image
- Improves with harmonic imaging

Electrical

• Repetitive geometric pattern

Example 13 Artifacts

What artifact is the blue arrow pointing to in this epiaortic image of the descending aorta in SAX?

- **1**. Echo contrast
- 2. Noise
- 3. Near field clutter
- 4. Shadowing
- 5. Refraction

Near Field Clutter

- High amplitude oscillations of piezoelectric elements
- Extra echoes in near field
- Difficulty differentiating near field structures
- Common with epi-aortic probe
- Reduce by using stand-off with saline filled glove
- Harmonics for TTE/TEE

Summary

- Artifacts are common
- Learn to recognize
- Don't misdiagnose
- Make pretty pictures

Selected Readings

- 1. Feldman MK et al. US Artifacts. RadioGraphics 2009; 29:1179-89.
- 2. Hindi A, et al. Artifacts in Diagnostic Ultrasound. Reports in Medical Imaging 2013; 6:29-48.
- Ohio State Physics Lecture Series on youtube: <u>http://www.youtube.com/watch?v=7iQe52pmbTC</u>
- 4. Le HT, et al Imaging Artifacts in Echocardiography. Anesth Analg 2016;122:633-46.

Thank You annette.vegas@uhn.ca

Forentie General

F

nto General Floard