APTE PREP COURSE

Anesthesia UNIVERSITY OF TORONTO

OUTLINE

- **1. RMWA and coronary artery territories**
- 2. Basic LV measurements
- 3. Ejection phase indices (FS, FAC, EF)
- 4. Isovolumetric Phase Indices (dP/dt)
- 5. Load-independent indices (research indices + strain)
- 6. Strain, Tissue doppler imaging, Speckle tracking
- 7. 3D LV assessment (video demos)

GUIDELINES TO KNOW

- 1. Lang, RM et al. (2015). Recommendations for Cardiac Chamber <u>Cardiovascular Imaging. Journal of the American Society of</u> **Echocardiography, 28(1): 1-39.**
- 2. Nicoara, A et al. (2020). Guidelines for the Use of Transesophageal **Echocardiography to Assist with Surgical Decision-Making in the** American Society of Echocardiography 33(6): 692 - 734.

Quantification by Echocardiography in Adults: An Update from the American Society of Echocardiography and the European Association of

<u>Operating Room: A Surgery-Based Approach From the American Society of</u> **Echocardiography in Collaboration with the Society of Cardiovascular** <u>Anesthesiologists and the Society of Thoracic Surgeons. Journal of the</u>

CORONARY ARTERY TERRITORIES

Reeves et al. (2013). Perioperative Transesophageal Echocardiography Examination: A Consensus Statement of the American Society of Echocardiography and the Society of Cardiovascular Anesthesiologists. JASE 26, 5: 443.

MYOCARDIAL THICKENING

Regional Function	<u>GRADE</u>	Inward Radial Motion	Systolic Wall Thickness
Normal	1	>30 %	Marked
Hypokinetic	2	<10 to <30%	Reduced
Akinetic	3	< 10%	Negligible
Dyskinetic	4	Paradoxical systolic motion	Systolic thining
Aneurysmal	5	Diastolic Deformation	

Table from PTE Masters, 2021.

BASIC LV MEASUREMENTS

1.1. Linear Measurements. It is recommended that linear internal measurements of the left ventricle and its walls be performed in the parasternal long-axis view. Values should be carefully obtained perpendicular to the LV long axis and measured at or immediately below the level of the mitral valve leaflet tips. In this regard, the electronic calipers should be positioned on the interface between the myocardial wall and cavity and the interface between the wall and the pericardium. Internal dimensions can be obtained with a twodimensional (2D) echocardiography (2DE)-guided M-mode approach, although linear measurements obtained from 2D echocardiographic images are preferred to avoid oblique sections of the ventricle (Table 1).

2D-guided linear measurements

BASIC LV MEASUREMENTS

- ► TG SAX view
- Frame before mitral valve closure, or frame with largest ventricular dimension
- End diastolic anterior-posterior diameter at mid pap level
- Be sure to exclude the papillary muscles
- In this view, can also allows measure of wall thickness and FAC

BASIC LV MEASUREMENTS

- Alternatively, can measure dimensions using M-mode
- ► TG-SAX or TG-2C
- Remember to measure at end diastole, not the middle of the envelope
- Also allows measures of wall thickness and FS

M-mode tracing

Supplemental Table 2 Normal ranges and soverity partition outoff values for 2DE derived LV size, function and mass

Supplemental Table 5 Normal ranges and sevency partition cuton values for 2DE-derived LV size, function and mass								
	Male			Female				
	Normal range	Mildly abnormal	Moderately abnormal	Severely abnormal	Normal range	Mildly abnormal	Moderately abnormal	Severely abnormal
LV dimension								
LV diastolic diameter (cm)	4.2–5.8	5.9-6.3	6.4–6.8	>6.8	3.8–5.2	5.3-5.6	5.7-6.1	>6.1
LV diastolic diameter/BSA (cm/m ²)	2.2–3.0	3.1–3.3	3.4–3.6	>3.6	2.3–3.1	3.2–3.4	3.5–3.7	>3.7
LV systolic diameter (cm)	2.5–4.0	4.1–4.3	4.4-4.5	>4.5	2.2–3.5	3.6–3.8	3.9–4.1	>4.1
LV systolic diameter/BSA (cm/m ²)	1.3–2.1	2.2–2.3	2.4–2.5	>2.5	1.3–2.1	2.2–2.3	2.4–2.6	>2.6
LV volume								
LV diastolic volume (mL)	62–150	151–174	175–200	>200	46–106	107–120	121–130	>130
LV diastolic volume/BSA (mL/m ²)	34–74	75–89	90–100	>100	29–61	62–70	71–80	>80
LV systolic volume (mL)	21–61	62–73	74–85	>85	14–42	43–55	56–67	>67
LV systolic volume/BSA (mL/m ²)	11–31	32–38	39–45	>45	8–24	25–32	33–40	>40
LV function								
LV EF (%)	52–72	41–51	30–40	<30	54–74	41–53	30–40	<30
LV mass by linear method								
Septal wall thickness (cm)	0.6–1.0	1.1–1.3	1.4–1.6	>1.6	0.6-0.9	1.0–1.2	1.3–1.5	>1.5
Posterior wall thickness (cm)	0.6–1.0	1.1–1.3	1.4–1.6	>1.6	0.6–0.9	1.0–1.2	1.3–1.5	>1.5
LV mass (g)	88–224	225–258	259–292	>292	67–162	163–186	187–210	>210
LV mass/BSA (g/m ²)	49–115	116–131	132–148	>148	43–95	96–108	109–121	>121
LV mass by 2D method								
LV mass (g)	96–200	201–227	228–254	>254	66–150	151–171	172–193	>193
LV mass/BSA (g/m ²)	50–102	103–116	117–130	>130	44–88	89–100	101–112	>112

Lang, RM et al. (2015). Recommendations for Cardiac Chamber Quantification by Echocardiography in Adults: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Journal of the American Society of Echocardiography, 28(1): 1-39.

- 1. Fractional shortening (1D)
- 2. Velocity of circumferential fibre shortening
- 3. Fractional area change (2D)
- 4. Ejection fraction (3D)

- 1. Fractional shortening (1D)
- 2. Velocity of circumferential fibre shortening
- 3. Fractional area change (2D)
- **Ejection fraction (3D)** 4.

(End-Diastolic Value) – (End-Systolic Value)

End-Diastolic Value

1. Fractional shortening (1D)

(End-Diastolic Diameter) – (End-Systolic Diameter) End-Diastolic Diameter

- Quick and easy
- Inaccurate if any regional dysfunction is present

M-mode tracing

1. Fractional shortening (1D)

(End-Diastolic Diameter) — (End-Systolic Diameter) End-Diastolic Diameter

Quick and easy

Inaccurate if any regional dysfunction is present

M-mode tracing

Q1. Does this patient appear to have normal LV function?

Adult Echo X7-2t		
23-1VSd	0.793 cm	
8.1– LVIDd	4.31 cm	
2D - LVPWd	0.976 cm	
²⁰ / ₅ – IVSs	1.34 cm	
C !- LVIDs	2.89 cm	
P(-LVPWs	1.32 cm	
EDV (MM-Teich)	83.5 ml	Burnie
IVS/LVPW (MM)	0.813	
IVS % (MM)	69.0 %	
ES (MM-Teich)		
ESV (MM-Teich)	31 9 ml	-
EE (MM-Teich)	61.9 %	
	35 3 1/2	Service and a
	55.2 %	50.00
and the second s		
57		
- Arrow		
PAT T: 37.0C		1
TEE T: 37 9C		
A CONTRACTOR OF		12.
State of the second second		Labras .

Q1. Does this patient appear to have normal LV function?

Q1. Does this patient appear to have normal LV function?

Adult Echo		
23-IVSd	0.793 cm	
8.1-LVIDd	4.31 cm	
- LVPWd	0.976 cm	
2D 5-IVSs	1.34 cm	
C'- LVIDs	2.89 cm	
P(-LVPWs	1.32 cm	
EDV (MM-Teich)	83.5 ml	Brancia
IVS/LVPW (MM)	0.813	
IVS % (MM)	69.0 %	
FS (MM-Teich)	32.9 %	
ESV (MM-Teich)	31.9 ml	-
EF (MM-Teich)	61.8 %	22
LVPW % (MM)	35.2 %	State State
	A	
and the second sec	2-2	
	-	
		_
PAT T: 37.0C		
TEE T: 37 9C		
Part Internet and the	the second	and the second

- 1. Fractional shortening (1D)
- 2. Velocity of circumferential fibre shortening
- 3. Fractional area change (2D)
- **Ejection fraction (3D)** 4.

(End-Diastolic Value) – (End-Systolic Value)

End-Diastolic Value

Velocity of circumferential fibre shortening

What are two ways of measuring ejection time? What is the normal vcfs?

Fractional shortening * 1 / ejection time (s)

M-MODE through AV, MELAX

LVOTO spectral doppler in DTG

M-MODE through AV, MELAX

CWD through AV in DTG

M-MODE through AV, MELAX

LVOTO spectral doppler in DTG

Velocity of circumferential fibre shortening

What are two ways of measuring ejection time? What is the normal vcf?

Fractional shortening * 1 / ejection time (s)

1100 R SEC

Velocity of circumferential fibre shortening Fractional shortening * 1 / ejection time (s)

what is the VCF?

▶ For a patient with a FS of 24% and an average ejection time of 350ms,

Velocity of circumferential fibre shortening Fractional shortening * 1 / ejection time (s)

what is the VCF?

For a patient with a FS of 24% and an average ejection time of 350ms,

.24 * 1 / .35 sec = .68 circ/sec

- 1. Fractional shortening (1D)
- 2. Velocity of circumferential fibre shortening
- 3. Fractional area change (2D)
- 4. Ejection fraction (3D)

3. Fractional Area Change

(End-Diastolic Area) – (End-Systolic Area) 100% **End-Diastolic Area**

- Quick and easy
- Avoids foreshortening of the apex
- Inaccurate if any regional dysfunction is present
- Dependant upon accurate cross section

X7-24 53 *

2D 58% C 50 P Off Gen

- 1. Fractional shortening (1D)
- 2. Velocity of circumferential fibre shortening
- 3. Fractional area change (2D)
- 4. Ejection fraction (3D)

3. Fractional Area Change

Ejection Fraction = (End-Diastolic Volume) – (End-Systolic Volume) 100% **End-Diastolic Volume**

- Quick and easy
- Dependant on clear endocardial border definition, no foreshortening (TEE often underestimates)
- Does not account for MR

ISOVOLUMETRIC PHASE INDICES (DP/DT)

- ► The maximum rate of rise of LV pressure during systole aka how fast the myocardium can contract
- CWD through the mitral valve, requires an MR jet
- Time for the velocity to rise from 1-3 m/s aka 'rate of pressure rise'

$dP/dt = 32 \cdot 1000/dt$

ISOVOLUMETRIC PHASE INDICES (DP/DT)

- ► The maximum rate of rise of LV pressure during systole aka how fast the myocardium can contract
- CWD through the mitral valve, requires an MR jet
- Time for the velocity to rise from 1-3 m/s aka 'rate of pressure rise'

ISOVOLUMETRIC PHASE INDICES (DP/DT)

- Quick and easy
- Accurate in patients with MR
- Afterload independent
- Needs a clear MR envelope
- Preload dependant

- End systolic elastance
- Preload recruitable stroke work
- Preload adjusted max power
- Strain rate

- End systolic elastance
 - Best and most load
 independent index of
 contractility
 - Calculated from pressure volume loops under variable loading conditions (nitro, IVC compression)

- Preload recruitable stroke work
 - Stroke work = Integrated area within a pressure volume loop
 - Calculate stroke work for loops with different loading conditions
 - Plot as a function of enddiastolic volume

- Preload adjusted max power
 - Stroke work = Integrated area within a pressure volume loop

Preload-Adjusted Maximal Power Index = Integrated Area within Pressure-Area Loop (End-Diastolic Area)^{3/2}

- Strain and Strain Rate
 - Dimensionless measure
 - Fractional change in length produced by the application of stress"
 - Derived from Doppler Tissue Imaging or Speckle tracking

TYPES OF STRAIN

Direction

Systole Shortening = -ve (Diastole) (Lengthening = +ve)

Thickening = +ve (Thinning = -ve)

Shortening = -ve (Lengthening = +ve)

- Strain and Strain Rate
 - Dimensionless measure
 - Fractional change in length produced by the application of stress"
 - Derived from Doppler Tissue Imaging or Speckle tracking

MORE NEGATIVE = MORE SHORTENING

TISSUE DOPPLER IMAGING

- Form of pulsed wave doppler
- Focuses on low frequency, high amplitude signals
- Sample gate on lateral mitral annulus gives S', or myocardial segment for strain
- Derive peak systolic myocardial velocity
- Major limitations are:
 - influence from the translation of the heart
 - Angle dependence
 - Overlap for normal and abnormal values

SPECKLE TRACKING

- Ultrasound imaging of the myocardium creates speckles due to scattering, reflection, interference
- Individual speckles can be isolated and tracked frame to frame
- Analysis of movement provides angle and translation independent tool for measuring strain, strain rate
- Limited by noise

SPECKLE TRACKING / STRAIN

OUTLINE

- **1. RMWA and coronary artery territories**
- 2. Basic LV measurements
- 3. Ejection phase indices (FS, FAC, EF)
- 4. Isovolumetric Phase Indices (dP/dt)
- 5. Load-independent indices (research indices + strain)
- 6. Strain, Tissue doppler imaging, Speckle tracking
- 7. 3D LV assessment (video demos)

FANCY 3D STUFF

Calculating 3D LVEF with MPR

How to Jelly Bean

APTE PREP COURSE

Anesthesia UNIVERSITY OF TORONTO

