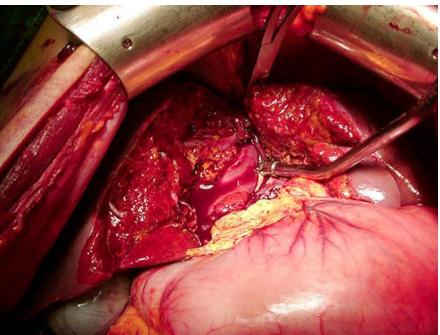
RESCUE TEE EXAMINATION PTE EXAM PREP 2019

January 2019

Dr. Christopher C. C. Hudson, MD MED MPH FRCPC Assistant Professor Department of Anesthesia and Pain Management

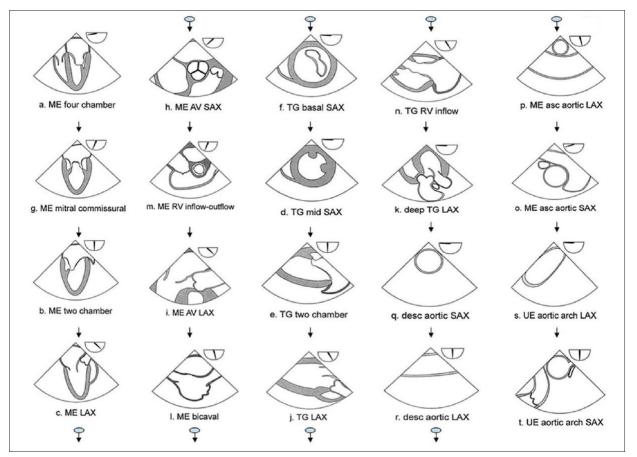
Disclosures


No Industry funding or affiliations

Case Description

You are called urgently to the operating room by your colleague. A 56-year-old male is undergoing an emergency laparotomy for liver laceration following a motor vehicle collision. The patient's blood pressure has acutely dropped to 65/45, HR 125, and SpO₂ is 85%.

http://www.trauma.org/index.php/main/image/154/


Question 1:

What are the three most valuable views during rescue TEE?

Answer 1:

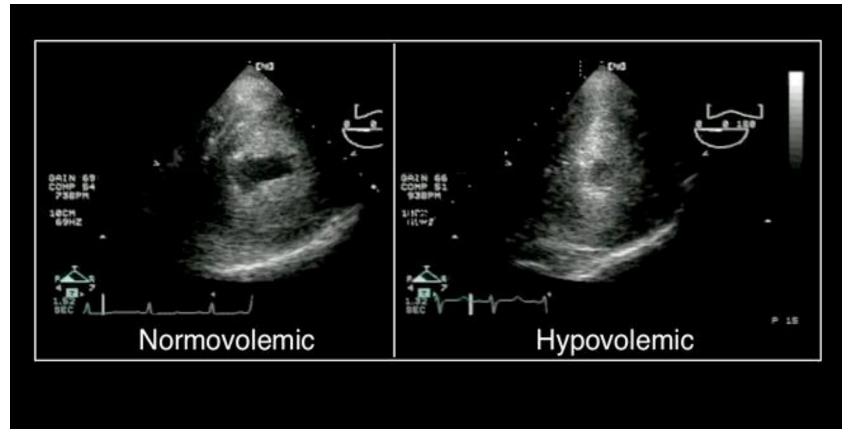
Ann Card Ann 2013; 16(4): 268-278

Question 2:

What is your differential Diagnosis?

Answer 2:

- 1. Hypovolemic Shock
- 2. Distributive Shock
- 3. Cardiogenic Shock
- 4. Obstructive Shock


Question 3:

What are the TEE findings for hypovolemic shock?

Hypovolemic Shock

Hypovolemic Shock

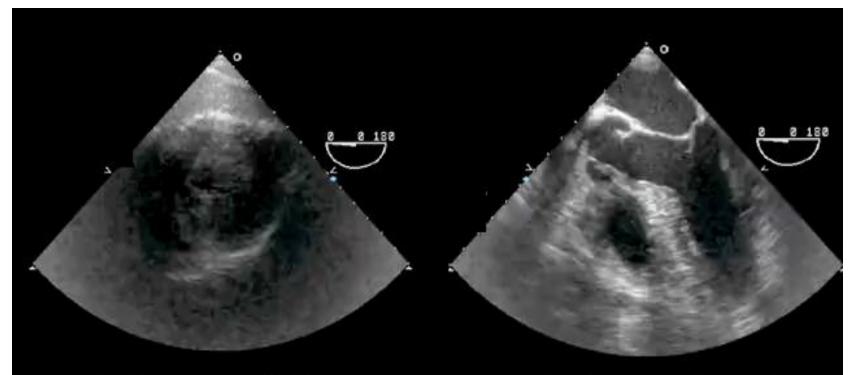
- Most common cause of hemodynamic instability prompting rescue TEE
 - End systolic LV obliteration (kissing walls)
 - Rightward deviation of IAS
 - Small IVC (<1.2cm)
 - -RWMA

Hypovolemic Shock

 Table 2
 Normal values for 2D echocardiographic parameters of LV size and function according to gender

	Male		Female	
Parameter	Mean \pm SD	2-SD range	Mean \pm SD	2-SD range
LV internal dimension				
Diastolic dimension (mm)	50.2 ± 4.1	42.0-58.4	45.0 ± 3.6	37.8–52.2
Systolic dimension (mm)	32.4 ± 3.7	25.0-39.8	28.2 ± 3.3	21.6–34.8
LV volumes (biplane)				
LV EDV (mL)	106 ± 22	62–150	76 ± 15	46–106
LV ESV (mL)	41 ± 10	21–61	28 ± 7	14–42
LV volumes normalized by BSA				
LV EDV (mL/m ²)	54 ± 10	34–74	45 ± 8	29–61
LV ESV (mL/m ²)	21 ± 5	11–31	16 ± 4	8–24
LV EF (biplane)	62 ± 5	52–72	64 ± 5	54–74

BSA, body surface area; EDV, end-diastolic volume; EF, ejection fraction; ESV, end-stystolic volume; LV, left ventricular; SD, standard deviation.


Question 4:

What are the TEE findings for distributive shock?

Distributive Shock

TEE Transgastric LV SAX

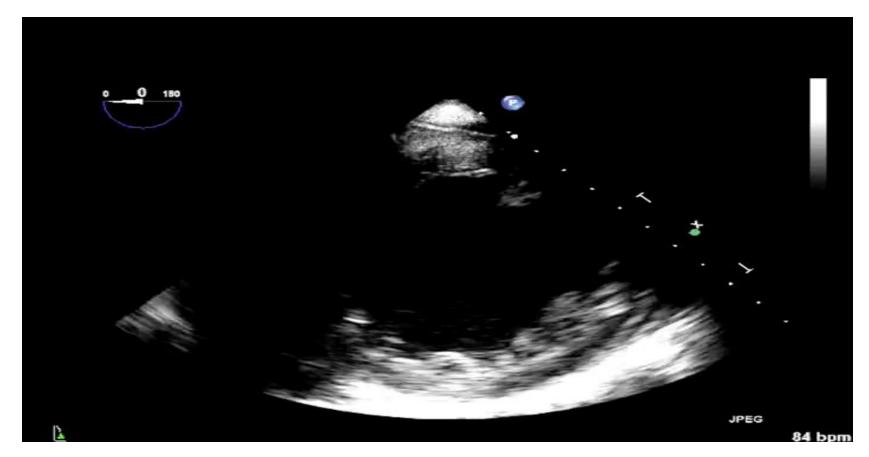
TEE Mid-Esophageal 4-Chamber

Distributive Shock

- Examples
 - Sepsis/SIRS
 - Anaphylaxis
 - Neurogenic
- Very small LV cavity at end-systole, with normal end-diastolic values
- SVR = ((MAP-CVP)/CO)*80.0

Question 5:

What are the TEE findings for cardiogenic shock?

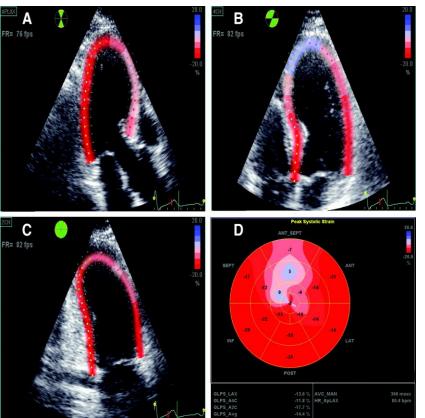


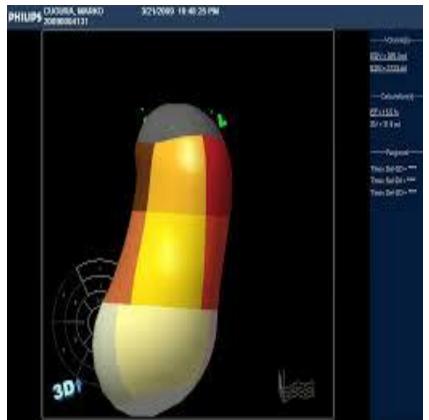
Answer 5:

- Depends on the cause I
- 1. LV failure
- 2. RV failure
- 3. Myocardial ischemia
- 4. Aortic dissection/injury

Qualitative: Eyeball

https://www.uptodate.com/contents/https ://www.popsci.com/this-is-how-eyeballtattoos-are-supposed-to-work


Summary LV	Systolic Indices	Normal	Abnormal
FS (m- mode)	%FS=((100*(LVEDd-LVEDs))/LVEDs	>26-45%	<25%
FAC (2D)	%FAC=100*(EDA-EDS)/EDA	>40-60%	<40%
EF	%EF=100*(EDV-ESV)/EDV	>55%	<55%
MAPSE	Movement lateral annulus	12+/-2 mm	< 8 mm
MAV	S' velocity lateral annulus	>8cm/s	<5cm/s
MP Index		0.39+/- 0.05	>0.5
dP/dT	32mmHg/time	>1200mmHg/s	<800mmHg/s
VcF	FS/LVET	1.09+/- 0.3 circ/s	



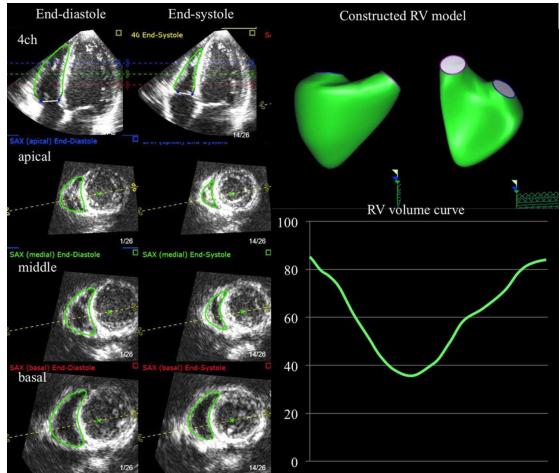
TEE – Exam study notes - Vegas

Strain

3D Quantification

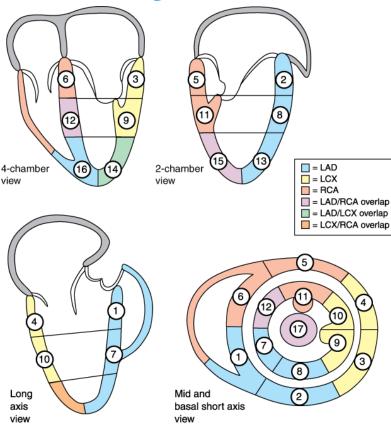
http://circimaging.ahajournals.org/c ontent/3/1/15 http://www.signavitae.com/wpcontent/uploads/2017/03/wordimage-2.png

Qualitative: Eyeball


https://www.uptodate.com/contents/https ://www.popsci.com/this-is-how-eyeballtattoos-are-supposed-to-work

Summary RV	Systolic Indices	Normal	Abnormal
FAC (2D)	%FAC=100*(EDA-EDS)/EDA	>35-60%	<35%
TAPSE		16-30 mm	<16 mm
TVPAV	S' posterior TV annulus (TG LAX)	10-19cm/s	<10cm/s
MAV	dP/dT	>8cm/s	<400mmHg/ s
IVA		2.2-5.2m/s ²	<2.2 m/s ²

TEE – Exam study notes - Vegas

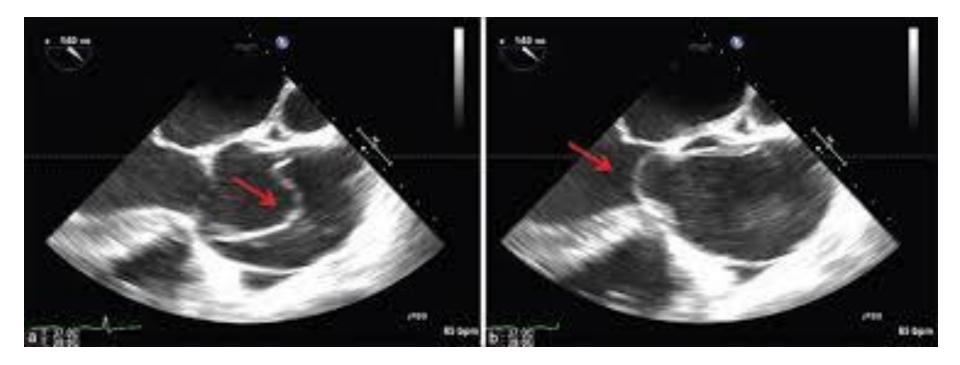


http://circimaging.ahajournals.org/conte nt/10/2/e005384

Myocardial Ischemia

Wall motion	Endocardial motion	Endocardial thickening
Normal	Normal	>30%
Hypokinesia	Decreased	10-30%
Severe hypokinesia	Minimal	<10%
Akinesia	None	None
Dyskinesia	Outward 'bulging'	Thinning
	in systole	during systole

Source: Longnecker DE, Brown DL, Newman MF, Zapol WM: Anesthesiology, 2nd Edition: www.accessanesthesiology.com


Copyright © The McGraw-Hill Companies, Inc. All rights reserved.

http://medind.nic.in/aad/t09/i2/aadt09i2p 174.htm

Aortic Dissection

http://www.annals.in/article.asp?issn=09 71-

9784;year=2015;volume=18;issue=2;spa ge=227;epage=230;aulast=Thunberg

Aortic Dissection

	True lumen	False lumen
Size	Large in aortic root & ascending Ao.Small in descending Ao.	Small in aortic root & ascending Ao. Large in descending Ao
Configuration	Round or oval	Crescentic
Flap curvature	Concave	Convex
Doppler signal Timing of signal	Dense Systolic	Sluggish Out of phase
Thrombus	Rare	Common
Cob webs* *Intimal remnants	Never	100% specific
Outer wall calcification	Very specific	Absent
Side branches	Common	Equally common

https://drsvenkatesan.com/2009/03/24/th e-aortic-dissection-what-you-wanted-toknow-about-true-and-false-lumen/aorticdissection-table/

Aortic Dissection

- Complications
 - Pericardial/pleural effusions
 - Regional/global LV dysfunction
 - Aortic insufficiency (60%)

Question 6:

What are the TEE findings for obstructive shock?


Answer 6:

- Depends on the cause I
- 1. Cardiac tamponade
- 2. Pulmonary embolism
- 3. Pneumo/hemothorax

Cardiac Tamponade

Cardiac Tamponade

Qualitative: Eyeball

https://www.uptodate.com/contents/https ://www.popsci.com/this-is-how-eyeballtattoos-are-supposed-to-work

Cardiac Tamponade

- Collapse of intracardiac chambers:
 - RA systolic collapse (>1/3 systole)
 - RV diastolic collapse
- IVC dilatation without respiratory variation (>20mm)
- Respiratory increase in inter-ventricular independence (exacerbated)
- Respiratory variation in diastolic filling
 MV E Velocity (>25%) TV E Velocity (>40%)

Pulmonary Embolism

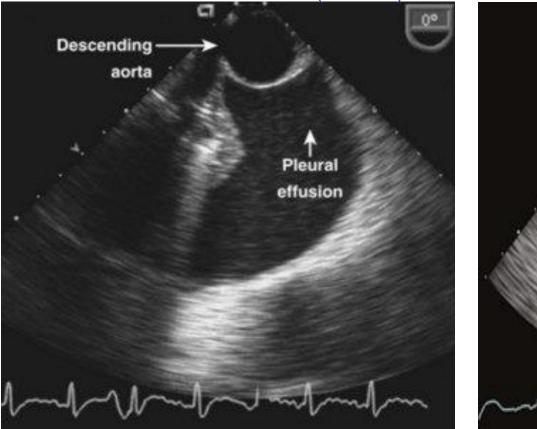
https://depts.washington.edu/anesth/education/ nity/tee/tee_2003_2.shtml

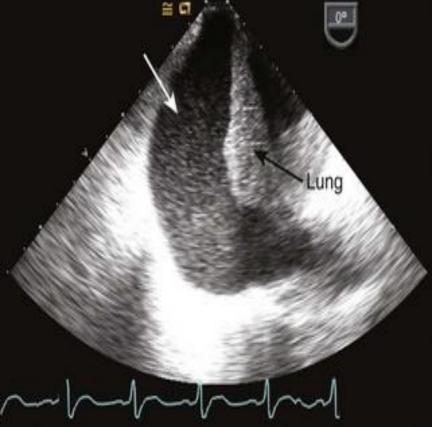
Pulmonary Embolism

• Direct:

- Direct visualization - uncommon

- Indirect:
 - RV dysfunction
 - McConnell's sign hypokinetic RV free wall sparing apex
 - TR (mod/severe) 50%
 - IAS gows to left 98%





Pneumo/hemothorax

Left sided (Aorta)

Right Sided (Liver)

https://clinicalgate.com/pericardial-disease-2/

Question 7:

What is the efficacy of rescue TEE?

Answer 7:

- Depends 😳
- Changed management in 60% of cases
- Changed management in in most cases
- Working diagnosis in 80% of cases
- High correlation with autopsy (meep)

Thank You!

Questions?

christopher.hudson@uhn.ca