

INTERPRETING FLOW IN THE PULMONARY SYSTEM

•A Primer on pressure and flow velocity wave interpretation.

- •Claude Tousignant MD FRCPC
- •St Michael's hospital
- •University of Toronto

OBJECTIVES:

- 1) Understand the forces that shape the pulmonary pressure and flow traces.
- 2) Describe a normal pulmonary flow and pressure trace.
- 3) Recognize abnormal pulmonary Doppler flow traces.
- 4) Perioperative assessment of pulmonary vascular disease.

THE CARDIO-PULMONARY SYSTEM:

• Right Ventricular Function:

- Low workload.
- Low pressure.
- Due to a vascular arrangement that is different from systemic.
- Long "hangout" interval.
 - Flow despite equalization of pressures.
 - Thanks to low resistance, high capacity of system.
 - Inertia maintains flow.
- Well adapted to volume variability.
- Poorly adapted to increases in impedance.

VASCULAR ARRANGEMENTS: ARTERIAL CIRCULATION

• Systemic circulation arranged in series.

- Compliance vessels proximal
- Resistance vessels distal.
- Compliance mitigates systolic pressure.
- Compliance supports diastolic pressure.
- In disease: 个 PP.
- Systolic pressure augmentation
 - Iliac bifurcation is a strong reflector.

THE PULMONARY VASCULAR SYSTEM

- Large proximal but short compliance vessels.
- Large Distributed Compliance.
 - Extensive branching of vessels.
 - Each with its own compliance.
- Low resistance system.

Normal PAP trace

THE PULMONARY CIRCULATION IN CARDIAC DISEASE:

- Most common cause of PHTN in cardiac patients is an elevated LAP.
- "Congestive Vasculopathy".
 - May become fixed and non modifiable.
 - When extensive, can generate significant reflections.

PULMONARY VASCULAR COMPLIANCE

- The pulmonary arteries are normally very compliant.
- Exquisitely sensitive to distal constraints.

PULMONARY COMPLIANCE:

- Large drop in compliance very early in disease.
- LAP is a significant contributor to TOTAL resistance.
- Distended vessels have reduced compliance.

Adapted from Lankhaar 2008

RESISTANCE:

- Steady state measurement:
 - (PAP-PCWP)/CO
- Modified by:
- LAP
- Arteriolar disease.
 - TPG: PAPm PCWPm.
 - NL: < 12mmHg.
- Total resistance.
 - All the above.

CAPACITANCE:

- Capacitance is a measure of *pressure response to input volume*.
- CAP = SV/PP
- The larger the PP for a given SV, the worse the capacitance becomes.
- Influenced by:
 - Compliance.
 - Resistance.
 - Loss of *distribution capacity*.
 - Wave reflections.

WAVE REFLECTIONS

- *Distal arteriolar disease* can generate strong reflections.
- In noncompliant vessels:
 - Wave amplitude maintained.
 - Increased wave speeds:
 - From 1m/s to >2m/s
 - Compounded by short vessels.
- Reflected waves return to the heart.
- Depress flow during ejection.

WAVE FLECTIONS: FLOW AND PRESSURE

- Flow waves are reflected inversely.
- Depress outgoing flow at PV.
- Flow recovery will produce notching on PWD of PA.
- **Pressure waves** are reflected positively.
- Reflected waves are *additive*. They AUGMENT pressure.

ASSESSING PULMONARY FLOW

• In TTE:

- Parasternal short axis.
- PWD at the level of the pulmonary valve.
- Equivalent TEE view not feasible.

PWD Sampling sites

Echocardiography Sidebotham

TEE OPTIONS

Getting close to PV a struggle in TEE

CFD PULMONARY ARTERY:

- Flow pattern uniformly even in systole.
- Some diastolic reversal common.

VORTEX FORMATION:

Reiter et al: 2008

Early systole

Late Systole

Diastole

PHTN Latent PTHN Normal

SEVERE PHTN

- Dilated PA.
- Severely disorganized flow with large, expansive vortex.

NORMAL PULMONARY PRESSURE AND FLOW.

Grade 1 LV cardiac surgery PAP: 28/14 (19) Cap: 5.9ml/mmHg (<0.8 = high mortality)

- Both traces *broad and rounded*.
- Flow precedes pressure in high compliance system.

ACCELERATION TIME

- Time from onset to peak flow velocity at PV.
- Depends on:
 - SV (unreliable in high or low SV).
 - PVR.
 - Wave reflection.
 - Compliance/capacitance.
- Indicator of severity of distal constraints
- Not a reliable estimate of PAP or PVR values.

PULMONARY FLOW PATTERNS IN DISEASE

PRESSURE AUGMENTATION BY DOPPLER:

- Doppler Profile:
 - RVOT.
 - Tricuspid regurgitation.
- Time from QRS to peak RVOT flow.
- Time superimposed on TR profile.
 - Pressure difference between this time and peak velocity (4V²) is the pressure augmentation.

WAVE DECONSTRUCTION FOURIER TRANSFORMATION

Fundamental frequency = HR Harmonics of fundamental frequency

Flow

Pressure

IMPEDANCE ANALYSIS: FREQUENCY DOMAIN

- Impedance: (Z = P/Q) for each harmonic.
- When using echo:
 - Flow velocity converted to Q:
 - (Mean CO = mean Velocity.)
- Harmonics 0 to 10
- Z₀ = *Total* resistance.
- Z_{1to3} = large reflections
- Z_c = characteristic impedance:
 - Inertance / compliance.

EFFECT OF VARIOUS DISEASE STATES:

• Severe MR of long duration:

- Pre inhaled milrinone: 80/33 (2.6lpm).
 - Large oscillations to 3rd harmonic.
- Post inhaled milrinone: 70/33 (3.2lpm).
 - Reduced oscillations but remain until 3rd harmonic.
- Grade 3 LV:
 - PAP 34/18 (3.5lpm).
- Normal cardiac patient:
 - PAP 28/14 (3.75lpm).

