Strain in My Daily Practice

Kent H. Rehfeldt, MD, FASE

Associate Professor of Anesthesiology

Mayo Clinic

Rochester, MN

Strain

S NCBI Resource	s 🛛 How To 🖻	Sign in to NCBI
Public ed.gov of harved streng of Hadress Maland Hollows of Hadress	PubMed strain echocardiography Grante RSS Create alert Advanced	O Search Help
Article types Clinical Trial Review Systematic Reviews Customize Test evailability Abstract Free full test	Format Summary - Sort by Best Match - Per page 20 - Send to Search results Items: 1 to 20 of \$123 - Find + Prov. Page 1 of 157, Next - Law ch algorithm.	 Filter your results: <u>A&.(7178)</u> Clinical Prediction Guides/Broad (3422) Diagnosis/Broad (3538) Etiology/Broad (4253)
Full text Publication datas 5 years 10 years Custom range	Results by year	Prognosis/Broad (3123) Systematic Restorts (32) Therapy/Broad (1331) Qualitative Research (54) Manage Etters
Species Humans Other Animals Clear all Show additional filters	h AE, Roos-Hesselin 22.	K Best match Most recent
l	Iwo-dimensional strain schosardiography-derived left ventricular ejection fraction, volumes, an global systolic dyssynchrony index. Comparison with three-dimensional echocardiography, Valdya GN, Salgado BC, Badar F, John A, Stoddard MF, Echocardiography, 2019 Jun;36(6):1054-1065. doi: 10.1111/echo.14362. Epub 2019 May 31. PMID: 31148242 Similar andeles	d Cownload CSV

Seventeenth Annual Toronto Perioperative TEE Symposium

November 2-3, 2019

MaRS Auditorium 101 College St. Toronto, M5G 1L7

3D TEE Course sold out!

November 1, 2019

Toronto General Hospital 200 Elizabeth St. Rm 1-EN-441 Toronto, MSG 2C4

Daily practice ???

DOI: 10.1111/echo.13879

REVIEWS

WILEY Echocardiography

Speckle tracking analysis in intensive care unit: A toy or a tool?

FP MAYO CLINIC

- Severe MR
- Moderate TR
- LV EF = 35%
- RV dysfunction
- Planned MV, TV repairs
- Surgeon requests ECMO standby

Case: RV Assessment ? *Visual estimate? Quantitative?*

RV Global Longitudinal Strain = - 13%

Strain: myocardial "deformation"

One Minute Strain Review <u>Strain</u>: myocardial deformation

<u>Strain</u>: measurement of myocardial lengthening or shortening

One Minute Strain Review Strain: myocardial Adeformation

Strain: measurement of myocardial lengthening or shortening

Strain = ∆ Length Length

Myocardial fiber orientation:

- Longitudinal (subendocardial)
- Circumferential (middle layer)
- Oblique (subepicardial)

Chong et al. JCVA 2014

Lengthening, shortening most commonly measured by speckle tracking throughout cardiac cycle

Why use strain?

- Assess both global and regional function
- Detects abnormalities before EF declines
- Less intra- and inter-observer variability compared with EF
- Relatively easy

One Minute Strain Review *What's Normal ?*

Supplemental Table 6 Normal LV strain values from meta-analysis and individual recent publications using specific equipment and software Global longitudinal strain					ific vendors'	
vendor	Software	n	Mean	SD	LLN	Reference
Varying	Meta-analysis	2597	-19.7%		NA	26
GE	EchoPAC BT 12	247	-21.5%	2.0%	-18%	31
	EchoPAC BT 12	207	-21.2%	1.6%	-18%	*
	EchoPAC BT 12	131	-21.2%	2.4%	-17%	+
	EchoPAC 110.1.3	333	-21.3%	2.1%	-17%	32
Philips	QLAB 7.1	330	-18.9%	2.5%	-14%	32
Toshiba	Ultra Extend	337	-19.9%	2.4%	-15%	32
Siemens	VVI	116	-19.8	4.6	-11%	197
	VVI	82	-17.3	2.3	-13%	198
Esaote	Mylab 50	30	-19.5	3.1	-13%	199

LLN, Lower limit of normal range.

*T. Kouznetsova and J. Staessen, Department of Cardiology, Catholic University Leuven, personal communication.

[†]P. Barbier, University Milano, personal communication.

ASE Chamber Quantification. J Am Soc Echocardiogr 2015;28:1-39.

One Minute Strain Review *What's Normal ?*

Right Ventricle

- RV GLS slightly more negative (greater absolute value) than LV GLS
 - Greater longitudinal contribution to ejection
- RV free wall strain (FWS) more negative (greater abs

Normal RV FWS: Normal: - 29 to - 30% Lower limit of normal: - 23%

One Minute Strain Review Limitations

- Range of normal values
 - Vendor differences
- Intra- and inter-observer variability exists
- Load dependent
- RV measurements using LV templates
- RV measurements using limited RV views (4C)

LV Strain in the OR

See the Unseen...Especially in the OR

Strain See the Unseen...Especially in the OR Pericardial Constriction

Strain Pericardial Constriction

Strain Pericardial Constriction

Strain

Pericardial Constriction

Strain Pericardial Constriction

Dark red = good Pink, blue = bad

Preserved septum

Decreased Ant, Inf, Lat

Strain Pericardial Constriction

IMAGE FOCUS

doi:10.1093/ehjci/jey031 Online publish-ahead-of-print:23 February 2018

Longitudinal strain by speckle tracking echocardiography in constrictive pericarditis

Edith Jottrand¹, Thomas Serste², Jean-Pierre Mulkay², Charlotte Vandueren¹, and Philippe Unger¹*

¹Department of Cardiology, CHU Saint-Pierre, Université Libre de Bruxelles (ULB), 322 rue Haute, Brussels B-1000, Belgium; and ²Department of Gastroenterology, CHU Saint-Pierre, Université Libre de Bruxelles (ULB), 322 rue Haute, Brussels B-1000, Belgium

* Corresponding author: Tet + 32 2 535 33 51, Fax + 32 2 535 33 62. E-mail: punger@ulb.ac.be Eur Heart J – CV Imag 2018

- Preserved strain in septum
- Decreased strain elsewhere due to pericardial tethering

RV Strain in the OR

RV Strain in the OR

RV Strain in the OR

Quantitative and Semi-quantitative Methods

FAC

TAPSE

Tissue Doppler / S'

Quantitative and Semi-quantitative Methods

FAC

Tissue Doppler / S'

Adjust tracking, change labels, deselect septum

The way of the second

Bad Example

Bad

Better

Tissue Motion Annular Displacement

CINIC MAYO CLINIC

- Speckle tracking length changes
 - Angle independent TAPSE

•

Perioperative Echocardiography and Cardiovascular Education

Section Editor: Nikolaos J. Skubas

Assessment of Tricuspid Annular Motion by Speckle Tracking in Anesthetized Patients Using Transesophageal Echocardiography

Tao Shen, MBBS,* Michael H. Picard, MD,† Lanqi Hua, RDCS,† Sara M. Burns, MS,* and Michael N. Andrawes, MD* Anesth Analg 2018;126:62–7

Compared lateral TMAD (TEE) with TAPSE (TTE)

Figure 3. Correlation of Mroode transmit areadar plane system system (SMNE) and basis restors areadar displacement (TMAD) (LL r = 0.67, $P < D_2$.

Perioperative Echocardiography and Cardiovascular Education

Section Editor: Nikolaos J. Skubas

Assessment of Tricuspid Annular Motion by Speckle Tracking in Anesthetized Patients Using Transesophageal Echocardiography

Tao Shen, MBBS,* Michael H. Picard, MD,† Lanqi Hua, RDCS,† Sara M. Burns, MS,* and Michael N. Andrawes, MD* Anesth Analg 2018;126:62–7

Compared lateral TMAD (TEE) with TAPSE (TTE)

Table 2. Summary of Hemodynamic Data		
	Mean ± SD	
TTE M-mode TAPSE, mm	19.8 ± 4.9	
TMAD (L), mm	17.4 ± 5.2	
TMAD (S), mm	10.2 ± 4.8	
TMAD (M), mm	14.2 ± 4.8	
Heart rate, beats/min		
At TAPSE measurement	69 ± 12	
At TMAD measurement	68 ± 20	
RV FAC, %	37.8 ± 9.7	
CVP, mm Hg	12 ± 4.4	
Cardiac index, L/min/m ²	2.3 ± 0.5	
PAP mean, mm Hg	29.5 ± 9.2	

Medicine (2018) 97:30

Observational Study

MAYO CLINIC

╔┲

OPEN

Tricuspid annular displacement measured by 2-dimensional speckle tracking echocardiography for predicting right ventricular function in pulmonary hypertension

A new approach to evaluating right ventricle dysfunction

Yidan Li, MD^{a.*}, Yidan Wang, MD^a, Yuanhua Yang, MD^b, Mingxi Liu, MS^c, Xiangli Meng, MS^a, Yanping Shi, MS^a, Weiwei Zhu, MS^a, Xiuzhang Lu, MD^{a.*}

TMAD (TTE) correlates with RV EF by CMR (lateral > septal)

Parameter	Group I (n = 182)	Group II (n=43)	P
Conventional parameters			
TAPSE, mm	15.12 ± 3.95	19.50 ± 2.88	<.00
150WP	0.7 0 ± 0.4.0	0.00120.00	<.00
BVFAC, %	33.40 ± 9.32	50.12±7.96	<.00
s', cm/s	10.98 ± 2.95	12.99 ± 3.05	<.00
e'/a'	0.51 ± 0.04	0.74 ± 0.29	.30
TMAD parameters		10.004-0000000000	6000
TMAD1, mm	13.82±4.18	17.10 ± 3.52	<.00
DWPMAG, UILI	6	11.00 ± 6.07	<.00
TMADm, mm	11.78 ± 3.25	14.37 ± 2.83	<.00
TMADm%	15.48 ± 4.81	21.76 ± 4.31	<.00

Medicine (2018) 97:30

Observational Study

OPEN

Tricuspid annular displacement measured by 2-dimensional speckle tracking echocardiography for predicting right ventricular function in pulmonary hypertension

A new approach to evaluating right ventricle dysfunction

Yidan Li, MD^{a,*}, Yidan Wang, MD^a, Yuanhua Yang, MD^b, Mingxi Liu, MS^c, Xiangli Meng, MS^a, Yanping Shi, MS^a, Weiwei Zhu, MS^a, Xiuzhang Lu, MD^{a,*}

TMAD tends to be 2 – 3 mm less than TAPSE

Parameter	Group I (n = 182)	Group II (n=43)	P
Conventional parameters			
TAPSE, mm	15.12 ± 3.95	19.50 ± 2.88	<.00
Page	Mar 1 (Mar 1) Mar 401	10-000 PM (0-000)	<.00
RVEAC, %	33.40 ± 9.32	50.12±7.96	<.00
s', cm/s	10.98 ± 2.95	12.99 ± 3.05	<.00
e'/a'	0.51 ± 0.04	0.74 ± 0.29	.30
TMAD parameters			6.761
TMAD1, mm	13.82 ± 4.18	17.10 ± 3.52	<.00
TWPALSE, THU		11.00 2 2.00	<.00
TMADm, mm	11.78 ± 3.25	14.37 ± 2.83	<.00
TMADm%	15.48 ± 4.81	21.76 ± 4.31	<.00

FMAYO CLINIC

GD MAYO CLINIC

Take Home Points

Strain in Daily TEE Practice

- Thousands of strain papers
 - Mostly TTE, many prognostic
- LV strain in OR
 - Reveal abnormalities suspected but difficult to see

• RV

- Great quantitative tool
- Angle independent
- Easy
- Reasonably well validated
- TMAD (angle independent TAPSE)

Questions?

