Mitral Stenosis

Dr Annette Vegas FRCPC, FASE Professor Anesthesiology

Toronto General Hospital Department of Anesthesia Perioperative Interactive Education

http://pie.med.utoronto.ca/TEE/

Outline

- Etiology
- Physiology
- Echocardiography
 - Valve
 - Secondary
- Assessment

http://pie.med.utoronto.ca/TEE/TEE_content/TEE_assessment_cardiacValves.html

Etiology

- Rheumatic (75%)
- Calcific
- Congenital
 - Parachute MV
 - Shone complex
- Inflammatory
 - Lupus
 - Rheumatoid arthritis
- Mass

Rheumatic MV

- Leaflet thickening + calcification
- Commissural fusion
- Chordal shortening + fusion = funnel shape

Calcific MV Pathology

- Annular calcification
 - Posterior leaflet
- Leaflet base rather then tip
- No commissural fusion
- Directly involves AV

Physiology MS

- Diastole
- LV relaxes, LVP < LAP, MV opens

Normal: rapid =

Rheumatic MV 2D TEE

- Thickened leaflet (>3mm)
- Restricted motion
 - At tips
 - Diastolic doming (hockey stick)
- Commissural fusion

Rheumatic MV 2D TEE

- Chordae
 - Thick
 - Short
- Restricted leaflet motion

Rheumatic MV 3D TEE

Calcific MV 2D TEE

- Restricted motion
 - At base
 - No diastolic doming
- No Commissural fusion

Calcific MV 3D TEE

Calcified Rheumatic

MS Secondary Changes

- Left Atrium
 - Enlarged
 - Spontaneous echo contrast (SEC)
 - Thrombus
- MV (MR)
- Pulmonary hypertension
 - RV dilatation
 - RVSP

Secondary Changes LA

PIE

51 bpm

Secondary Changes MR

Secondary Changes PAP

- IAS shift to R
- RV dilatation
- TR \bigcirc
 - Estimate RVSP

↑ PAP

- Not measure of MS severity 0
- Does reduce survival 0

Vel 387 cm/s PG 60 mmHa

-50.(cm/s - 5.0

-4.0 -3.0

-2.0 -1.0 m/s

Secondary Changes

MS Assessment

Severity MS

	Mild	Moderate	Severe
MVA* (cm ²)	> 1.5	1 – 1.5	< 1
Mean PG** (mmHg)	< 5	5 - 10	> 10
PAP** (mmHg)	< 30	30 - 50	> 50
*specific, **supportive Only f HR 60-80 NSR			
No single value defines severity			

MS Color Doppler

- Diastolic flow
- Turbulent antegrade
 - Nyquist 50-60cm/s
- Flow acceleration in LA

MS Spectral Doppler

PG between LA \rightarrow LV determines rate of pressure equalization in diastole

record with CWD

MS Spectral Doppler

- High E wave velocity
- Flattened E wave slope
- Fusion E and A wave
- PG: mean, peak
- MVA: PHT, DT

MR

- Higher E velocity
- Peak PG > 20mmHg
- Mean PG < 10mmHg

MS Spectral Doppler

MS PG Limitations

MVA

Anatomic			
Planimetry	2D TG Basal SAX, 3D		
Functional			
Pressure Half Time	220 ÷ PHT (ms)		
Deceleration Time	759 ÷ deceleration time (ms)		
Continuity Equation	<u>π r² x VTI_{LVOT}</u> VTI _{mitral}		
PISA	2πr ² x <u>Valiasing</u> x α /180 Peak Vmitral		

MVA Limitations

MVA	Avoid in	Use in
Planimetry	Heavily calcified	
PHT	AI, LV dysfunction, ASD, diastolic dysfunction	MR, AF
Continuity Equation	AI, LVOT obstruct, MR, AF, intracardiac shunt	Calcific MS
PISA		AI, MR, prosthetic, AF

MS with Multivalve Lesions

Lesion	PG	MVA
MR	High peak PG, use mean	 Underestimate MVA by continuity and PHT
AI	Low flow/PG	 Overestimate MVA Continuity (↑ AV flow) ↓ PHT (from ↑ LVEDP)
AS	Low flow/ PG	• Overestimate MVA, prolong PHT from impaired LV relax
TR		Gorlin formula invalid

MS MV Area Planimetry

- Anatomic measure
- Trace open MV orifice in mid-diastole
- Identify leaflet tips
- Repeat measures in AF
- Unreliable in calcific MS due to shadowing
- Underestimate 个HR

MS MVA Pressure Half-Time

- Time (in ms) from peak
 MV to half initial value
- MVA = 220/PHT
 - X Normal
 - × Post BMV
 - X Post Prosthetic
- If bimodal use mid part
- Deceleration time
 - Time from peak to 0
 - PHT = 0.29DT
 - MVA = 759/DT

Velocity

MS MVA PHT Limitations

Velocity

(Overestimate MVA)

Long PHT (Underestimate MVA)

• \uparrow LVEDP/ \downarrow compliance

- Al
- Cardiomyopathy/LVH
- Diastolic dysfxn (aging)
- \downarrow LAP compliance
 - ASD
 - MR
 - AF, \uparrow HR

Large LA

Abnormal relaxation

Avoid PHT in

- Elderly
- Calcific
- Diastolic dysfunction
- ? Post CPB, BMV

MVA PHT

MV mean PG 5mmHg, MVA 1.11cm²

MS MVA Continuity

Continuity Equation

Avoid if

- AI (overestimate),
- MR (underestimate)
- ASD
- AF

MVA Continuity

MVA PISA

MVA PISA

MVA PISA

MV Interventions in MS

Class	2014 AHA/ACC Guidelines MV Interventions in MS	Level of Evidence
I	PBC for symptomatic patients, severe MS (MVA ≤1.5 cm2, stage D) and favorable valve morphology without LA thrombus or moderate-to-severe MR	A
	MV surgery (repair, commissurotomy, or valve replacement) for severely symptomatic patients (NYHA class III to IV), severe MS (MVA ≤1.5 cm2, stage D), not high risk for surgery or not candidates or failed PBC	В
	Concomitant MV surgery for severe MS (MVA ≤1.5 cm2, stage C or D) undergoing other cardiac surgery	C
lla	PBC reasonable asymptomatic very severe MS (MVA ≤1.0 cm2, stage C) and favorable valve morphology without LA thrombus or moderate-to-severe MR	C
	MV surgery reasonable severely symptomatic (NYHA class III to IV), severe MS (MVA ≤1.5 cm2, stage D), with other operative indications	С
IIb	PBC consider asymptomatic, severe MS (MVA ≤1.5 cm2, stage C) favorable valve morphology without LA thrombus or moderate-to-severe MR with new onset of AF	С
	PBC consider symptomatic MVA > 1.5 cm2 with hemodynamically significant MS based on PCWP > 25 mm Hg or mean MV gradient > 15 mm Hg during exercise.	С
	PBC consider severely symptomatic (NYHA class III to IV), severe MS (MVA ≤1.5 cm2, stage D), suboptimal valve anatomy and not candidates/high risk for surgery	С
	Concomitant MV surgery consider moderate MS (MVA 1.6 – 2.0 cm2) undergoing other cardiac surgery	С
	MV surgery + LAA excision consider for severe MS (MVA ≤1.5 cm2, stages C and D) with recurrent embolic events despite adequate anticoagulation.	С

MS Management Wilkins Score

Based on valve morphology

Grade	Mobility	Thickening	Calcification	Subvalvular Thickening
1	Highly mobile valve with only leaflet tips restricted	Leaflets near normal in thickness (4–5 mm)	A single area of increased echo brightness	Minimal thickening just below the mitral leaflets
2	Leaflet mid and base portions have normal mobility	Midleaflets normal, considerable thickening of margins (5–8 mm)	Scattered areas of brightness confined to leaflet margins	Thickening of chordal structures extending to one-third of the chordal length
3	Valve continues to move forward in diastole, mainly from the base	Thickening extending through the entire leaflet (5-8 mm)	Brightness extending into the mid-portions of the leaflets	Thickening extended to distal third of the chords
4	No or minimal forward movement of the leaflets in diastole	Considerable thickening of all leaflet tissue (>8- 10 mm)	Extensive brightness throughout much of the leaflet tissue	Extensive thickening and shortening of all chordal structures extending down to the papillary muscles

The total score is the sum of the four items and ranges between 4 and 16.

Low score \leq 8, good outcome

Wilkins, GT, et al. Percutaneous balloon dilatation of the mitral valve: an analysis of echocardiographic variables related to outcome and the mechanism of dilatation. *Br Heart J, 1988 60*(4), 299-308.

MS Management Cormier Score

Based on leaflet calcification and subvalvular

Echocardiographic group	Mitral valve anatomy
Group 1	Pliable non-calcified anterior mitral leaflet and mild subvalvular disease (i.e. thin chordae ≥10 mm long)
Group 2	Pliable non-calcified anterior mitral leaflet and severe subvalvular disease (i.e. thickened chordae <10 mm long)
Group 3	Calcification of mitral valve of any extent, as assessed by fluoroscopy, whatever the state of subvalvular apparatus

lung, B, Cormier, B, et al. (1996). Immediate results of percutaneous mitral commissurotomy. A predictive model on a series of 1514 patients. *Circulation 1996, 94*(9), 2124-2130.

MS Management 3D TEE Score

Divides leaflets into 3 portions, scores each

	Leaflet	s				
	Anterior leaflet			Posterior leaflet		
	A1	A2	A3	P1	P2	P3
^a Thickness (0–6)	0-1	0-1	0-1	0-1	0-1	0-1
^a Mobility (0–6)	0-1	0-1	0-1	0-1	0-1	0-1
^b Calcification (0-10) (0=no, 1-2=calcified)	0–2	0-1	0–2	0–2	0-1	0–2
	^b Subvalvular apparatus					
	Proxim	al third	Middle	e third	Distal	third
Thickness (0-3) (0=normal, 1=thickened)	0-1		0-1		0-1	
Separation (0-6) (0=normal, 1=partial, 2=no)	0–2		0–2		0–2	

^aNormal=0, mild=1-2, moderate=3-4, severe >5
^bNormal=0, mild=1-2, moderate=3-5, severe >6

Mild	Moderate	Severe
<8	8 - 13	≥14

Soliman O I, et al. New Scores for the Assessment of Mitral Stenosis Using Real-Time Three-Dimensional Echocardiography. *Curr Cardiovasc Imaging Rep 2011, 4*(5), 370-377.

Selected Readings

- Cherry AD, Maxwell CD, Nicoara A. Intraoperative Evaluation of Mitral Stenosis by Transesophageal Echocardiography. Anesth Analg 2016;123:14-20.
- Baumgartner H, et al. Echocardiographic assessment of valve stenosis: EAE/ASE recommendations for clinical practice. J Am Soc Echocardiogr 2009;22:1-23.
- Wunderlich NC, Beigel R, Siegel RJ. Management of Mitral Stenosis Using 2D and 3D Echo-Doppler Imaging. JACC: Cardiovasc Imaging 2013;6:1191-1205.
- Alaa Mabrouk SO, Tanaka H, et al. Comparison of mitral valve area by pressure half-time and proximal isovelocity surface area method in patients with mitral stenosis: effect of net atrioventricular compliance. Eur J Echocardiogr 2011;12:283–290.
- Wilkins, GT, et al. Percutaneous balloon dilatation of the mitral valve: an analysis of echocardiographic variables related to outcome and the mechanism of dilatation. *Br Heart J, 1988 60*(4), 299-308.
- Iung, B, Cormier, B, et al. (1996). Immediate results of percutaneous mitral commissurotomy. A predictive model on a series of 1514 patients. *Circulation 1996, 94*(9), 2124-2130.
- Soliman O I, et al. New Scores for the Assessment of Mitral Stenosis Using Real-Time Three-Dimensional Echocardiography. *Curr Cardiovasc Imaging Rep 2011,* 4(5), 370-377.

Which of the following is not a finding in rheumatic MS ?

- **1**. Commissural fusion
- 2. Annular + leaflet base calcification
- 3. Chordal shortening + fusion
- 4. Leaflet tip calcification
- 5. Diastolic doming

What is the calculated MVA ?

- **1.** 0.72
- 2. 0.92
- **3**. 1.08
- **4.** 1.20
- **5**. 1.40

Which of the following is true?

- A. Mean gradient is underestimated with tachycardia
- B. MR underestimates MS severity by mean PG
- C. Pressure half time is decreased with reduced cardiac output
- D. Al overestimates MVA by PHT method

Severe MV stenosis is diagnosed when the normal MVA is reduced by at least ?

- **1**. 25%
- 2. 33%
- **3**. 50%
- **4.** 66%
- **5.** 75%

Which secondary finding is not consistent with the isolated MS ?

- 1. Dilated left atrium
- 2. Dilated right ventricle
- 3. Dilated left ventricle
- 4. Dilated tricuspid valve annulus

What is the calculated MVA (in cm²) based on the information provided:

r 1.7cm, Valias 25cm/s, Vmax 250cm/s, α angle 100

0.8
 1.0
 1.0
 1.2

4. 1.4

MVA = $2\pi r^2 x Va/Vmax x \alpha/180$ = 2(3.14) (1.7)² x (25/250) x 100/180 = 1.0

