

In cooperation with:

OBJECTIVES FACULTY PROGRAM 3D TEE WORKSHOPS THE CITY REGISTRATION

Sunday, November 11th, 2018

Presented by the Department of Anesthesiology and Division of Cardiac Surgery Peter Munk Cardiac Centre Toronto General Hospital University Health Network J. Moreno Department of Anesthesia & Interdepartmental Division of Critical Care Medicine Toront o General Hospital. UniversityHealth Network. Jacobo.Moreno@uhn.ca

Sixteenth Annual Toronto Perioperative TEE Symposium

Toronto - November 10-11, 2018

MaRS Auditorium 101 College St.

Toronto, M5G 1L7

3D TEE MULTIPLANAR RECONSTRUCTION

Problem Based Learning Discussions: Workshops • Multi-vendor • Hands-on 3D TEE • Basic TEE

DISCLOSURE

- No academic conflict of interest
- No financial conflict of interest
- No compensation received for pharmaceuticals and/or devices discussed

HOW CAN WE USE 3D MPR?

Other 3D vendors: GE, Siemens.

J Am Soc Echocardiogr. 2017 Apr;30(4):303-371

UNDERSTANDING MPR

Other MPR software: Flexi-Slide (GE), Image-COM MPR (Tom-Tec), eSieValves (Siemens).

Coronal and Sagittal planes are real acquired 2D tomographic images

Coronal and Sagittal planes are where the measures should be taken.

LAA

 $A_3A_2A_1$

Transverse plane is reconstructed by 3D software

WHAT CAN 3 MPR DO

European Heart Journal - Cardiovascular Imaging (2012) 13, 1-46 doi:10.1093/ehjci/jer316

EAE/ASE RECOMMENDATIONS

EAE/ASE Recommendations for Image Acquisition and Display Using Three-Dimensional **Echocardiography**

b. Cropping Methods

Color flow analysis includes (1) distal jets, (2) the proximal flow field of valvular flow regurgitation, and (3) flow through heart defects such as ventricular or atrial septal defects. Cropping of 3D color Doppler data sets follows the same principles as noncolor Doppler data set cropping and is determined mainly by the analysis intended. For regurgitant jets, it is recommended to crop the 3D color Doppler data set to show two long-axis views of the jet: one with the narrowest and one with the broadest width of the jet. This display should also include a short-axis view of the jet at the level of the vena contracta (Figures 5^{13} and 6).

Alternatively, color Doppler flow can be displayed using a multiple slice representation extracted from the 3D color Doppler data set, as shown in Figure 7.

https://www.kenhub.com/en/library/anatomy/heart-valves Hahn et al. J Am Soc Echocardiogr 2013;26:921-64

SCROLL THROUGH ANY VALVE

QLAB MPR i-Slice (Philips)

Other MPR software: Flexi-Slide (GE), Image-COM MPR (Tom-Tec), eSieValves (Siemens).

MPR FOR STENOSIS

AORTIC STENOSIS: LVOTd

VELUT ARBOR

TAVI: AORTIC VALVE ANNULUS

MITRAL STENOSIS

OTHER MPR APPLICATIONS

ASD

3D MPR FOR REGURGITATION

3D COLOR REGURGITATION

PISA 3D COLOR REGURGITATION

VELUT ARDOR

3D COLOR MPR QLAB (Phillips): 3D PISA EROA, AROA

RV calculated from EROA by 3D PISA or 3D VCA, have a favorably comparison with MRI calculated volumes

 $RV = 3D VCA \times MR VTI$

 $RV = 3D EROA \times MR VTI$

Thavendiranathan P, et al. JACC Cardiov asc Imaging. 2012;5(11):1161-75.

3D COLOR MPR QLAB (Phillips): 3D PISA EROA

Other 3D PISA software: eSie PISA™ (Siemens)

+38.8 Hemisphere or -92.4 Hemielliptical?

Ashikhmina et al. Anesth Analg. 2015;120(3):534-42.

- We cannot assume that 3D planimetered VCA is equivalent to EROA.
- Real 3D EROA should be calculated by 3D PISA.
- Despite significant correlation between 2D-3D VCA and 2D EROA (r=0.88-0.89, p<0.001), 3D VCA is significantly greater than 2D EROA.
- **AROA** is slightly bigger than the VCA.
- AROA \geq 3D VCA > 3D PISA EROA.

Chin et al. Echocardiography. 2010;27(2):161-6 Sato et al.. Cardiovasc Ultrasound. 2015;13:24 Zoghbi et al. J Am Soc Echocardiogr. 2003;16(7):777-802 Lancellotti et al. Eur J Echocardiogr. 2010;11(3):223-44. Mascherbauer et al. J Am Soc Echocardiogr. 2005;18(10):999-1006. Thavendiranathan P, et al. JACC Cardiovasc Imaging. 2012;5(11):1161-75 Cobey et al. J Am Soc Echocardiogr. 2016 Jan;29(1):A26-7

3D MPR LIMITATIONS

- Limited **temporal** and **spatial** resolution.
- Translation artifacts.
- Angle dependence.
- Complex dynamic changes of VCA size and shape.
- VCA is characterized by high-velocity flow acquired using CFD, being more representative of a functional or hemodynamic EROA rather than a true EROA.

The Lynn & Arnold Irwin Advanced Perioperative Imaging Lab

Toronto General Hospital Jacobo.Moreno@uhn.ca

Peter Munk Cardiac Centre

Toronto General Toronto Western **Princess Margaret** Toronto Rehab